【全网无错版】上周末,唐杰、杨强、林俊旸、姚顺雨真正说了什么?
机器人圈·2026-01-13 17:41

文章核心观点 文章记录了2026年初中国AI领域一场汇聚顶尖学者与产业界核心人物的圆桌讨论,探讨了中国大模型行业的发展分化、AGI的下一个技术范式、Agent战略以及中国AI的未来前景[1][6]。核心观点认为,中国AI行业在经历了2025年开源模型的爆发式增长后,正进入一个关键的分化与战略选择期,行业需从追随转向引领,通过聚焦特定方向、探索新范式、发展Agent应用并改善创新环境,以在全球竞争中占据领先地位[6][22][57][70]。 话题1:中国大模型将如何分化? - 市场出现To C与To B的明显分化:ChatGPT和Claude Code分别被视为To C和To B的典范。To C应用对智能强度的需求增长放缓,而To B应用则因智能直接关联生产力,对最强模型有明确的付费意愿溢价[8][9][10][11]。 - 技术路径出现垂直整合与模型应用分层分化:在To C场景,模型与产品强耦合的垂直整合模式依然有效(如ChatGPT、豆包)。但在To B生产力场景,趋势是模型层与应用层分离,强大的基座模型被多样化的应用层产品所利用[12]。 - 企业战略分化基于自身基因与数据优势:腾讯作为To C基因强的公司,其瓶颈在于为模型提供更多上下文(Context)和环境(Environment),而非单纯追求模型规模[13][14]。大公司可利用其内部多样化的真实场景数据来训练模型,这相比依赖外部数据标注商能获得独特优势[15]。 - 分化是自然演进与客户需求驱动的结果:行业分化并非完全预设,而是在与客户频繁交流中自然发现机会(如Anthropic聚焦Coding和Finance),中国SaaS市场环境与美国不同也影响了分化路径[17][18]。 - 学术界与工业界的分化与协作:工业界在资源投入上主导发展,学术界应跟进解决基础科学问题,如智能上界、资源分配效率、哥德尔不完备定理下的幻觉消除极限等[19][20]。 话题2:AGI的下一个范式 - 自主学习(Self-learning)成为硅谷共识与热点方向:该方向已被广泛讨论,但其具体形态因场景和奖励函数不同而多样,例如聊天个性化、编码环境适应、科学探索等[23]。 - 自主学习已在特定场景下以渐变形式发生:例如ChatGPT利用用户数据优化聊天风格,Claude Code项目95%的代码由自身编写以实现自我改进,这被视为一种特定场景下的AGI体现[24]。 - 新范式的瓶颈在于想象力与评估标准:实现突破的关键条件可能已部分具备(如Cursor的模型利用实时用户数据更新),但更大的挑战是如何定义和验证“实现了自我学习”的成功标准[25][26]。 - OpenAI仍被视为最有可能引领新范式的公司,尽管其商业化可能削弱了部分创新基因[26]。 - 强化学习(RL)的潜力尚未充分释放:RL的计算规模(Compute)尚未充分扩展,仍存在基础设施(Infra)问题,其潜力有待进一步挖掘[27]。 - Task-time Scaling(任务时间缩放)与主动性(Active Learning)是关键探索方向:让AI在单次任务中通过消耗更多计算时间(Token)变得更强,以及让AI能根据环境信号自主启动并规划任务,是重要的范式候选,但伴随安全担忧[27][28]。 - 个性化(Personalization)可能是自主学习早期落地的场景,但如何衡量AI时代的个性化效果成为新的技术挑战[29][30]。 - 记忆(Memory)技术的突破可能是线性发展后的感知临界点:技术本身线性发展,但当记忆能力达到某个临界点,用户体验可能发生跃迁,类似电影《Her》中的效果,这可能需要一年左右时间[31]。 - 联邦学习(Federated Learning)代表的协作范式前景广阔:通过“多个中心协作”模式,能结合通用大模型与本地专业化模型,在医疗、金融等隐私要求高的领域具有应用潜力[34]。 - 2026年出现新范式变革的驱动力增强:学术界算力资源提升使其具备创新基础;工业界持续投入的边际效率下降,催生对“智能效率”(Intelligence Efficiency)提升新范式的需求[35][36][37]。 话题3:Agent战略 - To B的Agent已进入价值上升曲线:Anthropic的路径表明,在To B领域,模型智能提升与解决任务数量、商业收入增长高度一致,使得生产力Agent的发展势头强劲[41]。 - 当前Agent发展的两大瓶颈是环境部署与用户教育:即使模型能力停滞,通过更好部署到各行业也能带来巨大经济收益(潜在影响GDP 5%~10%,目前远低于1%)。同时,会使用AI工具的人与不会使用的人之间的能力差距正在拉大,教育至关重要[41][42]。 - 产品哲学趋向“模型即产品”(Model as a Product)或“研究即产品”(Research as a Product):成功的Agent产品(如Manus)以及OpenAI的模式显示,研究员端到端地将研究转化为产品是重要趋势[43]。 - 未来的Agent将是“托管式”且与自我进化、主动学习强相关:能够执行长时间、通用任务的Agent,需要在任务过程中自我进化并主动决策,这对模型能力提出更高要求[44]。 - Agent的终极潜力在于与复杂物理环境交互:超越电脑环境,指挥机器人进行湿实验等操作,才能实现自动化人类更长时间工作流的愿景,这可能需3-5年并与具身智能结合[45][46]。 - 通用Agent的机会在于解决长尾需求:与推荐系统类似,解决海量个性化、非标的长尾问题是AI和通用Agent的核心魅力与挑战所在[46][47]。 - 强化学习(RL)降低了修复模型问题的难度:相比以前,现在只需少量查询(Query)和奖励(Reward)数据,就能通过RL快速优化模型在特定问题上的表现[48][49]。 - Agent将经历从人工定义到内生自动化的四个阶段:从当前目标与规划皆由人定义,最终发展为目标和规划均由大模型自主定义的内生(Native)系统[51][52]。 - Agent成功的三要素是价值、成本与速度:需解决有真实价值的问题、控制实现成本,并在快速迭代的时间窗口内建立优势[54][55]。 话题4:中国AI的未来 - 中国在技术追赶和工程复现方面具备强大能力:一旦技术路径被证明可行,中国团队能快速跟进并在局部做到更好,制造业和电动车已有先例[57]。 - 突破新范式需要更多冒险精神与前沿探索:中国拥有大量顶尖人才,但相较于美国,愿意从事高风险、探索性前沿研究的人可能还不够多,这受经济、商业环境和文化因素影响[58]。 - 研究文化更倾向于做确定性高和看重榜单排名:国内研究更聚焦已被验证的路径(如预训练),对探索性方向(如长期记忆)相对谨慎。同时,相较于海外更注重实际体验(如Claude的实用性),国内有时对刷榜数字看得更重[60][61]。 - 算力资源分配存在差距,但可能催生“穷则思变”的创新:美国在用于下一代研究的计算资源上领先中国1-2个数量级,中国大量算力用于产品交付。资源紧张可能反而激励算法与基础设施的联合优化等效率创新[62][63][64]。 - 年轻一代冒险精神增强与营商环境改善是积极信号:90后、00后的冒险精神更强,结合中国营商环境的持续改善,为创新提供了可能[65][70]。 - 对中国团队3-5年内成为全球AI领导者的概率判断存在分歧:林俊旸认为概率低于20%,主要因历史积淀和算力差距[66]。姚顺雨表示乐观,认为关键在于能否引领新范式[57][58]。杨强回顾互联网发展,认为中国在应用层面,尤其是To C领域,有望百花齐放并领先[66][68]。 - 成功的关键条件包括人才、环境与坚持:需要敢于冒险的聪明人、更有利于创新的营商环境(减少交付压力、鼓励竞争),以及从业者在选定的道路上笨拙而持久的坚持[69][70][71]。