AI芯片格局
傅里叶的猫·2026-01-24 23:52

一、TPU的崛起与挑战 - Google TPU凭借对LLM的原生优化优势,正成为OpenAI、苹果等科技巨头的重要选择,逐渐打破英伟达GPU的垄断格局[3] - 从GPU生态迁移至TPU面临显著的技术适配挑战,包括数值表示和精度体系差异,模型转换过程复杂,根据参数量差异,复杂模型的转换周期可能长达一周[4] - 全球AI算力需求爆发式增长,TPU出现约50%的供给缺口,导致算力排队和项目延期,并将生产压力传导至核心代工方台积电[5] - TPU基于Google自研的JAX开源框架,与主流的CUDA生态不兼容,熟悉JAX的开发者占比极低,抬高了使用门槛[5][6] 二、TPU与AWS Trainium的对比 - Google TPU将矩阵和张量运算嵌入芯片硬件层面,在LLM规模化运行中具备显著效率优势,是OpenAI选择其作为推理核心的关键原因[7] - AWS Trainium未将矩阵运算模块集成于芯片本身,需依赖外部库和内存调用,导致单芯片效率受限,在大规模集群中累计效率损耗显著[7] - 在网络架构上,谷歌通过GKE在垂直扩展能力上突出;AWS凭借Elastic Fabric Adapter在水平扩展上有优势;英伟达在InfiniBand等技术上实现了横竖扩展的较好平衡[8] - AI芯片竞争已延伸至软件生态、网络架构等全栈协同,Google TPU的“芯片+框架+网络”闭环生态构成了核心壁垒[8] 三、Oracle的逆袭策略与风险 - Oracle凭借绑定美国政府政策和联合产业链伙伴囤积高端芯片,实现了“弯道超车”[9] - 根据美国临时规定,截至10月底,部分硬件厂商需优先供应政府机构,Oracle借此成为政府芯片采购核心伙伴,并联合CoreWeave、Nebius等近乎垄断了H200、B200等高端芯片的市场供给[10] - Oracle与OpenAI签订了未来4-5年价值3000亿美元的计算资源合作协议,通过算力转售赚取20%-25%的抽成[10] - Oracle缺乏自研LLM和成熟的数据中心运营经验,其AI业务与核心数据库业务脱节,商业逻辑高度依赖与Palantir的“数据+算力”互补合作[11] - 未来面临谷歌、微软等巨头的算力竞争加剧,以及若芯片产能缓解、政策红利消退,其资源垄断优势将快速弱化的挑战[12] 四、OpenAI的资金与商业困境 - OpenAI陷入“高投入、低产出”的资金困境,年营收约120亿美元,乐观估算年现金流仅60亿美元,但其总投入规模达3000亿美元级别,现金流无法覆盖需求[14] - 全球多地(欧洲、日本、澳大利亚、印度等)存在算力供给缺口,制约其全球化扩张[14] - LLM推理业务是其核心收入,但该业务毛利率乐观估计仅30%左右,净利率约25%,当前20美元/月的个人订阅价难以可持续盈利,需提价至40-50美元/月[15] - 相比谷歌拥有30亿日活用户的产品生态,OpenAI在企业级应用和云服务上布局薄弱,缺乏稳定落地场景,议价能力较弱[15] - OpenAI计划与博通合作研发专属TPU/NPU芯片,目标在12个月内启动部署,达成10GW级AI加速器容量,涉及百亿级美元订单,但该计划被行业认为不切实际,缺乏经验、资金和供应链资源[16] 五、大模型的未来发展方向 - 当前自回归式大模型出现性能增益边际递减问题,参数量扩大带来的性能提升收窄,而算力成本指数级增长[17] - “用AI生成的数据训练AI”的闭环模式可能导致数据质量劣化[17] - 电力供应不足已成为制约算力集群扩张的现实物理瓶颈,对英伟达的过度依赖导致全供应链承压[17] - 未来发展方向包括:1) 混合专家模型(MoE),通过任务分工降低算力成本并提升效率;2) 扩散模型,一次性生成整体语境以提升推理效率;3) 多模态与实体数据融合,拓展应用场景[18][19] - AGI短期内难以实现,大模型将回归工具属性,行业竞争焦点从“做出更强的模型”转向“更好地落地模型价值”[19]