2026,进入AI记忆元年
36氪·2026-01-27 18:16

行业趋势:AI竞赛进入以记忆为核心的下半场 - 自2023年年中起,SOTA模型的迭代周期被快速压缩至35天,曾经的SOTA模型在短短5个月就可能跌出Top5,7个月后连Top10都难以进入[3] - 模型技术进步进入瓶颈期,而过去两年多围绕AI记忆的技术和产品(如向量数据库、记忆框架)则呈现“你方唱罢我登场”的热闹景象[4] - 市场正诞生出越来越多跑通PMF的细分爆款,如代码补全、情感陪伴、智能客服等“模型+记忆”的商业模式[4] - 大模型的叙事正从以scaling law为核心的参数闪电战,切换至以记忆为主导的马拉松式下半场,记忆能力已成为拉开不同模型和Agent表现的核心来源[33] 对AI记忆的行业误解与红熊AI的解决方案 误解一:记忆等于RAG加长上下文 - 2023-2024年AI基础设施爆发期,RAG技术一度成为AI记忆的代名词,行业普遍认为叠加长上下文窗口和检索优化算法就能解决AI健忘问题[8] - 红熊AI创始人指出,传统RAG在落地中暴露出短板,例如在法律场景中,语义相似但适用范围天差地别的法条细节会被整体相似性掩盖,且无法遵循法律体系的优先适用规则[9] - 在客服AI场景中,RAG方案会导致每天重复回答相同问题时产生不必要的检索成本,并且在用户跨会话咨询时出现记忆丢失[10] - 基于语义检索的RAG方案只能解决不到60%的真实需求,其本质是被动的检索工具,无法解决“记不住”的核心矛盾,且通常只能以周为单位做离线数据更新,无法实时写入[10] - 红熊AI借鉴人脑记忆逻辑,打造了完整的记忆科学体系,将AI记忆拆解为显性记忆、隐性记忆、联想记忆以及动态进化记忆,不同层之间通过智能算法动态流转[12] - 该体系为记忆加入了情感加权、智能遗忘、跨智能体协同等能力,从底层重构了AI记忆的逻辑,解决了存储数据量爆炸带来的成本飙升和上下文过长问题[12] 误解二:事实检索重于一切 - 红熊AI团队曾将准确率当作记忆系统的唯一KPI,这在金融风控、技术运维等事实优先的场景中运行顺畅[15] - 但在情感咨询等场景中,用户需要的是被理解、被安抚、被肯定,而非精准的事实答案[17] - 这倒逼红熊AI攻克了记忆系统的情感难题,通过给每段记忆贴上情感权重标签,从多维度量化用户情绪(如文本中的负面/正面词汇密度、句式、情绪强度词,综合算出0-100分的情感分数)[18] - 情感权重不仅决定记忆的优先级,更影响AI的回应逻辑,例如当用户有高负面评价历史时,AI会优先安抚再同步事实信息[18] 误解三:Agent的未来是标准化 - 尽管市场期待超级Agent,但红熊AI认为Agent类产品的宿命是革命传统SaaS,但也必须走上SaaS非标碎片化的老路[22] - 没有一套标准化的记忆系统能适配所有行业,甚至同一行业的不同品类都需要差异化定制,例如电商中卖手机壳和卖手套的商家关注的关键词和记忆规则都不同[22] - 不同行业的情感权重占比天差地别:售后客服、教育场景情感权重占40%-50%,必须优先安抚情绪;医疗、金融风控场景仅占10%-20%,事实优先;通用陪伴场景占20%-30%[23] - 红熊AI必须在做好标准化能力的基础上,接受在解决方案环节的非标准化[24] 红熊AI的产品与能力建设 - 红熊AI在今年1月推出记忆熊v0.2.0,构建了完整的记忆科学体系[12] - 在记忆熊v0.2.0中,公司强化了集群化Agent记忆协同能力,通过引入统一记忆中枢,实现多Agent间的最小化、按需式记忆共享,解决传统多Agent系统的记忆冗余、冲突问题[24] - 针对多模态数据处理,公司推出了三大解析引擎实现100%版面还原,支持PPTX高保真解析、音视频以文搜音,并通过向量+图谱双驱动检索,将多跳推理准确率提升至92.5%[24] - 非标环节集中于行业词汇库积累和知识图谱打造,首次拓展新品类客户时,前期与客户共建及知识梳理就需要几周时间,用户数据处理消耗整体25%上下的成本[27] - 公司需要不断学习积累不同行业知识,例如医疗行业的负面词是“疼痛、过敏、并发症”,金融行业核心词是“平仓、建仓、净值”[29] - 这种前期非标准化的缓慢开拓,会成为企业的先发优势和核心壁垒,遵循SaaS行业从灯塔客户到细分行业解决方案再到全行业拓展的成长路径[30][31]

2026,进入AI记忆元年 - Reportify