Advanced Science:暨南大学黄俊祺等揭示铁死亡抵抗新机制
生物世界·2026-01-30 16:00

文章核心观点 - 研究发现ERM蛋白是调控铁死亡敏感性的关键开关,抑制ERM蛋白可通过“ERM-Actin-ROS-NRF2-HMOX1”信号轴激活细胞的自我保护程序,从而抵抗铁死亡[3][4] - 研究揭示了一种新的铁死亡抑制策略,即“可控氧化”,表明低剂量的活性氧诱导剂可通过激活NRF2-HMOX1抗氧化通路来抑制铁死亡,这挑战了“活性氧必然推动铁死亡”的传统认知[3][7] 研究机制与发现 - ERM蛋白抑制剂能降低ERM磷酸化,破坏其与F-actin结合,引发轻度短暂的活性氧升高,进而通过氧化KEAP1、稳定NRF2、上调HMOX1等基因,最终阻断脂质过氧化并抑制铁死亡[6] - 基因敲降ERM成员或表达磷酸化缺失突变体可重现对铁死亡的保护效应,而过表达野生型ERM则会增强细胞对铁死亡的敏感性[6] - 该机制将细胞骨架的机械信号与氧化应激响应联系起来,为通过靶向ERM蛋白功能、肌动蛋白骨架重塑或精细调控活性氧阈值来干预铁死亡提供了实验依据[4][7] 临床前模型验证 - 在顺铂诱导的急性肾损伤小鼠模型中,ERM抑制剂NSC305787处理显著降低了血肌酐和尿素氮水平,减轻了肾组织损伤,并伴随HMOX1表达升高和脂质过氧化标志物4-HNE减少[6] - 在新生小鼠脑片的糖氧剥夺模型中,该ERM抑制剂同样表现出明显的细胞保护作用[6] 对铁死亡研究领域的启示 - 通过筛选多种低浓度活性氧诱导剂,发现它们均可通过NRF2-HMOX1轴抑制铁死亡,提示“可控氧化”是一类未被系统评估的铁死亡抑制策略[7] - 这一发现提示,低剂量氧化剂可能是一类被低估的铁死亡小分子抑制剂,未来在研究与筛选铁死亡抑制剂时,有必要系统评估候选化合物的活性氧诱导能力及其浓度依赖性的毒物兴奋效应[7]

Advanced Science:暨南大学黄俊祺等揭示铁死亡抵抗新机制 - Reportify