文章核心观点 - 2025年全球大模型在推理、编程、Agentic及多模态等能力上取得明显进步,已能应用于真实生产力场景,但模型在稳定性、幻觉率等方面仍有短板 [1][3] - 展望2026年,预计预训练Scaling-Law将重现,旗舰模型参数量将更上一个台阶,强化学习、模型记忆、上下文工程等领域将取得更多突破,推动模型向AGI目标迈进 [1][2][4] - 中美大模型发展路径不同:海外厂商追求智能上限,国内厂商在有限算力下通过开源和工程优化追求效率与性能平衡,但两者相互借鉴,共同推动AI产业发展 [12][14] 技术视角:模型能力进展与短板 - 2025年能力进展:海内外模型在推理、编程、Agentic及多模态能力上持续迭代,在文本、搜索、编程、图像&视频多模态任务等多个领域已达到真实生产力水平,进步超过2023年预期 [3] - 现存短板:模型通用能力在可靠性、幻觉率方面未完全解决,记忆能力有提升空间;细分领域上,强逻辑&数学推理能力稳定性不足,对真实世界的理解和建模能力较弱,智能呈现“锯齿状” [4] - 2026年展望:模型将在长板层面继续进化,并寻找有效路径补齐短板,从ChatBot到Agent,从短context生成到长思维链任务,从文本交互到原生多模态演进 [4] 模型细分能力复盘 - 推理:强化学习激励模型形成更长思维链解决复杂任务,“测试时计算”成为主流工程杠杆,模型学会并行思考与反思;模型推理与工具调用结合形成“交错思维链”,以完成更复杂的Agent任务,但产业也开始优化思维链效率以控制成本与延迟 [6] - 编程:在模型推理能力提升驱动下,AI编程从代码补全进化为具备工程闭环能力的开发者代理,能拆需求、搭框架、调接口、跑测试;前端追求极致视觉还原与即时预览,后端模型已具备架构思维,通过“慢思考”推演降低幻觉率,预计2026年编程仍是落地最快场景之一 [6] - Agentic:2025年工具调用能力成为标配,核心技术突破之一是交错思维链的使用,让智能体在思考与行动间无缝高频切换,提升实时修正能力并降低幻觉与记忆遗忘,能自主拆解数十个子任务并实现复杂长程任务闭环 [9] - 多模态:图片生成在质量、理解与控制能力上大幅跃升,迈入可控、可用、可规模化生产阶段;以Gemini-3为代表的原生多模态架构普及,统一token化训练,并将强化学习引入视觉和音频领域以加强时空逻辑和动作因果理解 [9][10] 海内外头部模型竞争格局 - 海外头部玩家:OpenAI、Anthropic、Gemini以AGI为远期目标,从不同维度加速探索;OpenAI文本类推理实力突出,同步提升多维度能力维持领跑;Gemini后来居上,基于预训练高质量数据与Scaling Law及后训练强化学习,基础与多模态能力大幅提升;Anthropic聚焦代码及Agent领域,走出别具一格变现路径 [11] - 国产大模型:整体能力与海外头部模型维持约半年静态差距,在海外模型推出3个月到半年后,国内头部厂商能推出能力相当的模型并达到SOTA水准;第一梯队包括阿里Qwen-3、字节豆包1.8、DeepSeek-V-3.2、Kimi-K2、智谱GLM-4.7、MiniMax-M2 [12] - 发展路径差异:海外厂商算力资源丰富,通过算力Scaling Law+算法优化+高质量数据齐头并进迭代基座模型,追求智能上限;国内厂商在有限资源下,通过开源路线、工程及算法优化追求效率与性能平衡,并在应用端开拓更具创新思维 [14] 模型架构:优化与创新 - 架构延续与优化:主流模型参数规模已达万亿以上,厂商更聚焦模型架构、算法、工程共同优化,在扩大参数规模的同时提升参数利用效率 [14] - MoE架构成为共识:MoE架构采用稀疏激活模式,通常仅激活模型总参数的10-20%,显著降低计算量,实现计算需求与模型规模的有效解耦;国产模型如DeepSeek-V3.2、MiniMax-M2、Qwen-2.5均使用MoE架构 [17] - MoE优化挑战:面临计算效率、专家负载不均、参数通信等问题,需通过更复杂算法和硬件基础设施解决,例如通过辅助损失函数实现负载均衡,并通过芯片与算法协同设计提升效率 [18] - 注意力机制优化:模型厂商基于效果在不同注意力机制(Full-Attention、Linear-Attention、Hybrid-Attention)间优化与切换,以平衡精度与效率,例如阿里千问深耕Linear-Attention,DeepSeek-V3.2引入Sparse-Attention将计算复杂度从O(N^2)降至O(Nk) [20] 工程优化:降本提速与规模化 - 核心目标:工程侧优化聚焦降本提速与规模化生产,包括推理侧思考链工程化、实时路由机制分配模型类型、长上下文规模化落地等 [21] - 具体实践:GPT-5引入实时路由模式,根据用户提示词自动分发请求;海内外厂商通过混合注意力机制、KV Cache压缩、算子优化、上下文重写与压缩等不同路径提升上下文处理效率 [21][22] 训练范式演进 - 预训练Scaling-Law重现:预计2026年预训练阶段在算法和工程优化下仍有提升空间,随着英伟达GB系列芯片成熟及推广,模型将基于更高性能的万卡集群实现Scaling Law,模型参数量和智能上限将进一步提升 [1][22] - 强化学习重要性提升:强化学习成为解锁模型高级能力的关键,其本质是“自我生成数据+多轮迭代”,依赖大规模算力与高质量数据;预计2026年强化学习在训练阶段占比将进一步提升 [2][23] - 强化学习占比数据:DeepSeek V3.2后训练计算预算占预训练成本的10%+,估计海外模型厂商相关比重更高,可能在30%左右 [23] - 强化学习路径演进:正从静态离线向动态在线演进,长期趋势是模型持续向半自动验证甚至不可验证的场景中进行在线学习 [26] 前沿技术路线展望 - 持续学习与模型记忆:旨在解决大模型“灾难性遗忘”问题,让模型具备选择性记忆机制;Google提出的MIRAS、Titans、Nested Learning、HOPE等算法和架构是让模型根据任务时间跨度和重要性动态调整学习和记忆方式的关键 [2][28] - 嵌套学习(Nested Learning):模仿人脑处理记忆的方式,通过分层学习和优化机制实现持续学习新范式 [29] - HOPE架构:作为嵌套学习的工程实现,是基于自修改Titans+连续记忆系统的多层次记忆系统,通过“快”“慢”系统协作对抗灾难性遗忘 [32] - 模型记忆成为Agent刚需:ChatGPT通过四层上下文堆栈工程化优化记忆,未来技术演进路径包括分层记忆、将长期记忆更新至模型参数 [35] - 世界模型:聚焦理解物理世界因果规律,是实现AGI的重要拼图;主要技术路径包括李飞飞团队的3D物理空间(Marble模型)、LeCun的基于控制理论的JEPA架构、Google DeepMind的交互式视频引擎(Genie 3) [36][40] 海外头部模型厂商巡礼 - OpenAI:2025年模型在推理、Agentic、多模态、代码方面全方位提升,发布GPT-4.1、o4-mini、GPT-5、Sora-2等;预计2026年将加速商业兑现,拓展企业端和广告市场 [41][42] - Gemini:2025年能力大幅跃升,Gemini-3发布使Google成为世界第一梯队;原生多模态图像生成模型Nano banana Pro具备空间推理和光影控制能力;预计2026年将聚焦综合能力提升并加速探索世界模型 [43][45][47] - Anthropic:2025年延续在编程领域优势,加强代码和Agent体验;推出Claude Code(截至25年底ARR已突破10亿美元)和Cowork,探索企业场景;预计2026年将提升记忆能力并探索更多Agent泛化场景 [48][49][52] - 商业化与IPO前景:截至26年1月,OpenAI估值达8,300亿美元,25年收入预计200亿美元,计划26年Q4启动IPO;Anthropic估值达3,500亿美元,25年收入90亿美元,也将在26年启动IPO [61] 国内头部模型厂商巡礼 - 阿里通义千问:2025年推出Qwen-3等模型提升全模态能力,领跑中国市场;预计2026年将探索B端Agent市场机遇,让Qwen Agent作为“Orchestrator”编排垂类Agent,并可能探索世界模型技术 [53] - 字节豆包:2025年提升基座模型能力,豆包1.8具备超长上下文与多模态、Agent能力;截至25年12月底,豆包大模型日均使用量达50万亿+(自发布以来提升417倍),日活用户突破1亿;预计2026年将延续多模态优势并深挖Agent机会 [54][55] - DeepSeek:2025年引领大模型走向开源普惠,发布R1、DeepSeek-Janus-Pro、DeepSeek-V3.2等;架构上采取稀疏注意力机制降低计算复杂度;预计2026年将持续追求技术优化与提升多模态能力 [56][57]
中金 | AI十年展望(二十六):2026关键趋势之模型技术篇