核聚变技术进展与关键时间节点 - 国际热核聚变实验堆(ITER)于2020年启动重大工程安装,计划于2034年开始氘-氚等离子体实验,2036年进行全磁能长脉冲运行,2039年进入氘-氚运行阶段 [2] - 中国环流三号(HL-3)在2025年5月实现聚变三乘积达到10的20次方量级,标志着中国聚变研究快速挺进燃烧实验阶段 [3] - 东方超环(EAST)在2025年1月首次实现1亿摄氏度、1066秒的长脉冲高约束模等离子体运行,再次刷新世界纪录 [4] - 紧凑型聚变能实验装置(BEST)于2025年5月提前两个月启动工程总装,计划2027年建成,2030年演示发电 [5] - 聚变堆主机关键系统综合研究设施(CRAFT)于2018年开工建设,预计2025年底建成,目标成为国际核聚变领域参数最高、功能最完备的综合性研究及测试平台 [5] 全球核聚变行业融资与市场规模 - 根据聚变工业协会(FIA)报告,2024年全球核聚变行业吸引投资超过71亿美元,其中新资金超过9亿美元,公共资金增长57%至4.26亿美元 [6] - 美国三大核聚变商业公司CFS、TAE、Helion合计融资43亿美元,谷歌和微软计划通过核聚变为其数据中心供电 [6] - 中国聚变新能公司注册资本已达145亿元人民币,星环聚能、能量奇点等公司均获得数亿元融资 [6] - 据Research Nester预计,2025年全球核聚变市场规模为3451亿美元,预计到2037年底将达到6338亿美元,期间年均复合增长率为5.1% [6] 核聚变关键时间节点展望 - 2030年:BEST装置预计实现聚变演示发电 [6] - 2035年左右:中国聚变工程实验堆(CFETR)计划建成 [6] - 2045年左右:中国可控核聚变能应用预计进入示范阶段 [6] - 2050年左右:预计实现聚变商业化发电 [6] 核聚变装置关键部件价值量分析 - 以ITER为例,磁体系统、堆内构件(含偏滤器、包层第一壁等)、真空室等关键部件成本占比分别为28%、17%和8% [7] - 按照单堆建造成本1000亿元人民币计算,上述三个关键部件合计价值量达530亿元人民币 [7] 核聚变关键材料 - 面向等离子体部件是工程制造要求最严苛的部件之一,主要包括第一壁、限制器和偏滤器,其他关键部件包括真空室、磁体线圈和氚工厂 [8] - 钨具有高熔点、高溅射阈值、高热导、低氚滞留等优点,是最有希望的面向等离子体材料 [9] - 铍是具有优异核性能和物理性能的稀有轻金属,可用于中子倍增剂和第一壁 [10] - 超导材料是磁体线圈的主要材料,包括Nb3Sn、NbTi等低温超导材料以及高温超导材料 [11] 全球核聚变装置运行状况 - 截至2025年6月24日,全球在运、在建和规划的聚变装置共168个 [44] - 按装置类型划分,托卡马克占比47%,仿星器占比17%,激光惯性装置占比8% [44] - 按国家划分,美国聚变装置总数49个居首(在运21个、在建7个、规划21个),其次为日本(26个)、中国(14个)、俄罗斯(14个) [44] 中国核聚变发展里程碑 - 中国于2006年正式加入ITER计划,承担了涵盖几乎所有关键部件制造的18个采购包 [51] - 2006年,世界首个全超导托卡马克装置EAST建成 [58] - 2020年,国内规模最大、参数能力最强的新一代“人造太阳”中国环流三号(HL-3)首次放电成功 [58] - 紧凑型聚变能实验装置(BEST)预计2027年建成 [58] 超导材料市场与产业 - 据IMARC Group测算,2024年全球超导材料市场规模为14亿美元,预计2033年将达到45亿美元,2025至2033年年均复合增长率为13.7% [107] - 按产品划分,低温超导材料在2024年市场份额中占比83% [107] - 全球仅有少数几家企业掌握低温超导线生产技术,主要分布在英国、德国、日本和中国 [108] - 西部超导是全球唯一的铌钛锭棒、超导线材、超导磁体全流程生产企业 [108] 相关公司业务进展 - 西部超导2024年实现营收46.12亿元,同比增长10.91%;归母净利润8.01亿元,同比增长6.44% [144] - 2025年第一季度,西部超导实现营收10.74亿元,同比增长35.31%;归母净利润1.70亿元,同比增长53.85% [144] - 西部超导已完成国内核聚变CRAFT项目用超导线材的交付,并开始为BEST聚变项目批量供货 [144] - 公司在高温超导领域侧重MgB2和Bi-2223的研发和产业化,已开始为世界首台10MJ/5MW高温超导储能装置提供MgB2线材 [144]
未来产业:核聚变关键部件与材料投资机会(附投资逻辑与标的)