Workflow
单步生成建模
icon
搜索文档
何恺明团队又发新作: MeanFlow单步图像生成SOTA,提升达50%
机器之心· 2025-05-21 12:00
核心观点 - 提出了一种名为MeanFlow的单步生成建模框架,通过引入平均速度概念改进现有流匹配方法,在ImageNet 256×256数据集上取得FID 3.43的显著成果[3][5] - 该方法无需预训练、蒸馏或课程学习,完全从头训练,大幅缩小单步与多步扩散/流模型性能差距[7][16] - 在1-NFE生成任务中相对此前最佳方法提升50%-70%,2-NFE生成时FID达2.20,媲美多步模型[16][18] 方法创新 - 用平均速度场(u)替代传统瞬时速度场(v),建立两者间的MeanFlow恒等式:u(z_t,r,t)=v(z_t,t)-(t-r)·du/dt[9][10] - 设计损失函数强制网络满足u与v的数学关系,支持无分类器引导(CFG)且采样无额外成本[4][5] - 模型参数量级从131M到676M可扩展,最大版本MeanFlow-XL/2实现最优效果[17] 实验结果 - ImageNet 256×256任务:1-NFE生成FID 3.43 vs IMM 7.77,2-NFE生成FID 2.20 vs DiT 2.27[16][18] - CIFAR-10无条件生成FID 2.92,与EDM框架的iCT(2.83)、IMM(3.20)等竞争[19] - 消融实验显示lognorm(-0.4,1.0)采样策略和CFG权重2.0时效果最佳[21] 技术突破 - 首次实现单步模型FID低于4.0,1-NFE生成质量超越多数多步模型[5][16] - 理论证明平均速度场可自然整合控制生成的技术,扩展性强[5][10] - 训练效率显著提升,仅需单步推理即可达到多步模型90%以上性能[18]