可信记忆
搜索文档
最火、最全的Agent记忆综述,NUS、人大、复旦、北大等联合出品
机器之心· 2025-12-22 17:55
文章核心观点 - 一篇由多所顶尖学术机构联合发布的百页综述,旨在为快速扩张但日益碎片化的“智能体记忆”领域提供一个统一的分析框架,以梳理其技术路径[2] - 文章指出,传统的“长/短期记忆”二分法已不足以描述当代系统的复杂结构,因此提出了一个名为“Forms–Functions–Dynamics”的三角分析框架[5][6] - 智能体记忆应被视为实现时间一致性、持续适应与长程能力的关键基底,未来将变得更可学习、更自组织、更具适应性[68] 智能体记忆的概念辨析 - **智能体记忆**:关注智能体持续维持的、持久的、可自我演化的“认知状态”,它需要在交互中不断更新、整合、纠错、抽象,并跨任务保持一致性[11] - **LLM记忆**:关注模型内部计算过程中如何更有效地保留和利用序列信息,以解决长距离依赖建模等问题,其研究不必然与智能体的长期自主行为绑定[12] - **RAG**:更接近“静态知识访问”,旨在从外部知识库检索静态信息以提升事实性,若缺乏长期一致性和演化机制,则并非完整的记忆系统[13] - **上下文工程**:作为优化“当下模型看到什么”的外部脚手架,而智能体记忆是支持学习与自主性的、维持跨窗口跨任务持续认知状态的内部基底[14] 记忆的形式 - 综述将智能体记忆的形式归纳为三大类:**Token级记忆**、**参数记忆**和**潜在记忆**[16] - **Token级记忆**:将信息存储为持久、离散、可外部访问与检查的单元(如文字、视觉token),具备透明、可编辑、易组合的优势[18][19] - **参数记忆**:信息存储在模型参数中,通过参数空间的统计模式编码并隐式访问,类似于“内化后的直觉”,但存在训练成本高、难以精确编辑等问题[22] - **潜在记忆**:信息以模型内部隐状态或连续表示存在,可在推理或交互周期中持续更新,它比Token级记忆更紧凑,比参数记忆更容易在推理期更新,但更难解释[24][26] 记忆的功能 - 综述按功能角色将智能体记忆分为三类:**事实记忆**、**经验记忆**和**工作记忆**[29] - **事实记忆**:记录来自用户与环境交互的知识,旨在提供一个可更新、可检索、可治理的外部事实层,以维持跨会话、跨阶段的一致性[31] - **经验记忆**:从任务执行中增量提升解决问题的能力,关注跨情景的长期积累与迁移,可按抽象层级分为基于案例的、基于策略的和基于技能的[32][33] - **工作记忆**:管理单个任务实例中的工作区信息,核心问题是在固定计算预算下处理庞大、高维的即时输入,可分为单轮工作记忆和多轮工作记忆[35] 记忆的动态机制 - 记忆系统的生命周期概括为三段:**记忆形成**、**记忆演化**和**记忆检索**,三者构成一个相互反馈的循环[38] - **记忆形成**:将原始上下文(对话、图像等)编码成更紧凑的知识表示,操作包括语义总结、知识蒸馏、结构化构建、潜在表示及参数内化[40] - **记忆检索**:根据当前观察与任务构造查询,返回相关记忆内容并格式化为模型可消费的信号,其触发节奏(而非模块本身)决定了“短期/长期”效果[41] - **记忆演化**:将新增记忆与已有记忆进行整合,通过合并、冲突消解、剪枝等机制,让记忆库保持可泛化、连贯且高效,涉及复杂的治理问题[43] 资源与前沿展望 - 综述汇总了相关的基准测试和开源框架资源,为实证研究与落地开发提供了关键基础设施[44] - 未来记忆系统的发展趋势包括:从**记忆检索**走向**记忆生成**,让记忆内容能被压缩、重组、重写成更适合推理的表示[50][53] - 记忆管理将从**手工编写规则**转向**自动化管理**,可能通过将记忆操作显式接入决策或构建自优化的记忆结构来实现[54][56][57] - **强化学习**将在记忆系统中扮演更核心的角色,未来可能实现完全由强化学习驱动的记忆控制,减少对人类先验知识的依赖,并对记忆全生命周期进行端到端优化[58][59][60] - 随着智能体走向具身与多智能体协作,**多模态记忆**和**多智能体共享记忆**成为关键挑战,需要实现异质信号的统一存取与推理,并发展出主动管理的集体表示机制[64][70] - **可信记忆**成为首要原则,需在隐私保护、可解释性以及抗幻觉与冲突鲁棒性等方面进行系统性建设[65][66]