慢思考框架

搜索文档
首个多模态专用慢思考框架!超GPT-o1近7个百分点,强化学习教会VLM「三思而后行」
量子位· 2025-06-06 21:45
多模态推理模型的挑战与突破 - 在文本推理领域,"慢思考"模型(如GPT-o1、DeepSeek-R1)凭借显式反思机制,在数学和科学任务上显著优于"快思考"模型(如GPT-4o)[1] - 但在多模态推理场景中,这些模型表现平平,甚至被Qwen2.5-VL-72B超越,在MathVista、MathVerse等基准上与快思考模型持平[1] 多模态慢思考的两大核心障碍 - **优势消失问题**:在GRPO算法训练多模态模型时,随着训练推进,零优势信号样本比例显著增加,导致有效训练样本锐减[3][10] - **反思惰性问题**:现有视觉语言模型(VLM)受限于视觉模态特性,倾向于"快思考",缺乏主动审视与修正能力[5][6] VL-Rethinker的创新解决方案 - **优势样本回放(SSR)**:动态存储非零优势样本,优先复用绝对优势值较大的关键样本,提升训练效率[19][23] - **强制反思机制**:通过追加"反思触发"文本强制模型二次推理,引导多样化反思行为,已在Pixel Reasoner、SkyR1V2中应用[21][25] 训练数据集与模型性能 - 研究团队精编ViRL39K数据集,包含38,870条高质量多模态推理问题,覆盖八大主题(逻辑推理、图表推理等)[7][8][9] - VL-Rethinker-72B在MathVista上提升5.6%(达80.4%),MathVerse提升6.3%(达63.5%),超越GPT-o1(73.4%、57.0%)[27][29] - 在多学科测试中,MMMU-Pro成绩55.9%,EMMA成绩38.5%,接近OpenAI-o1水平[28]