Workflow
生成式 Agent
icon
搜索文档
Karpathy:我不是要造新词,是「上下文工程」对 Agent 来说太重要了
Founder Park· 2025-07-04 21:10
上下文工程概念 - 决定AI应用效果的关键在于提供完整且恰当的上下文而非单纯优化提示词[3] - 上下文工程是一门精妙的艺术与科学需精准填充信息包括任务描述示例RAG多模态数据工具等[7] - 上下文窗口需平衡信息量与相关性过量或不足均影响性能[7] 与提示词工程的区别 - 提示词仅为用户输入的文本指令如让ChatGPT总结文本[16] - 提示词工程是系统化设计测试优化提示词的方法论类似软件工程[17] - 上下文工程是动态系统设计在正确时间以正确格式提供信息与工具[19] - 三者关系:提示词是输入文本提示词工程优化过程上下文工程构建动态系统[20] 重要性体现 - AI Agent效能核心取决于上下文质量而非代码复杂度[24] - 案例对比:普通Agent仅处理简单请求而优质Agent整合日历历史邮件等上下文实现高效响应[25] 落地策略分类 写入上下文 - 草稿板机制持久化保存任务计划避免token截断[31] - 长期记忆跨会话存储如ChatGPT的生成式记忆[32][35] 筛选上下文 - 从草稿板或记忆中提取相关片段如少样本示例或指令[37][38] - 工具选择采用RAG技术提升3倍准确率[41] - RAG挑战包括代码索引与语义分块需结合知识图谱检索[42] 压缩上下文 - 自动摘要技术处理长交互如Claude Code的95%窗口压缩[43] - 修剪策略包括硬编码规则或训练专用裁剪模型[46] 隔离上下文 - 多Agent架构分配独立上下文窗口专注子任务[48][50] - 沙盒环境隔离消耗性资源如HuggingFace的CodeAgent[53][54] - 运行时状态对象选择性暴露字段实现隔离[55] 行业动态 - Andrej Karpathy强调工业级LLM应用中上下文组件复杂性被低估[10] - LangChain与DeepMind工程师推动上下文工程方法论标准化[3][56]