视觉神经增强

搜索文档
紫东太初开源视觉神经增强方法,即插即用终结多模态幻觉 | ACL 2025
量子位· 2025-06-27 18:57
核心观点 - 中科院自动化所联合新加坡国立大学、东南大学等团队提出大模型幻觉的高效解决方案VHR,通过"视觉神经增强"机制直接放大模型中的视觉关键注意力头输出,显著降低模型的幻觉现象 [1][2] - 此前主流方法如对齐训练或输出层分布修正仅作用于模型最终输出阶段,未能深入干预其内部表征和生成机制,难以实现高效精准的幻觉抑制 [3] - 大型视觉语言模型(LVLMs)常因过度依赖语言先验知识而非图像真实内容导致事实性错误,这种幻觉是受内部语言建模偏好的系统性影响 [4][5] - 研究发现注意力机制内部的不平衡性是幻觉根本原因,少数注意力头对视觉信息敏感,大多数头更依赖语言规律 [7][8] - 提出视觉感知头散度(VHD)指标量化注意力头对视觉输入的响应强度,并开发视觉感知头增强(VHR)技术强化视觉敏感注意力头输出 [8][9] - VHR在多个基准测试中优于现有方法,几乎不增加额外时间开销 [8][16] 技术方法 VHD指标 - 提出VHD指标量化每个注意力头对视觉信息的敏感度,通过对比有无图像输入时注意力头输出的差异计算 [9] - 仅有少数注意力头表现出高VHD值,表明模型内部存在视觉感知与语言偏好头的显著分化 [9] - 进一步提出Token-VHD(T-VHD)指标评估生成每个词时模型对视觉信息的依赖程度,统计表明幻觉词通常对应较低的T-VHD值 [10][11] VHR技术 - VHR通过三个步骤动态强化视觉敏感的注意力头:异常VHD过滤、注意力头选择与强化、分层渐进式增强 [14][15] - 每层选择VHD得分前50%的注意力头,将其输出缩放α倍以增强视觉上下文的贡献 [15] - 采用逐层强化策略避免层间干扰,并在首步生成时确定每层的关键注意力头 [16] SSL方法 - SSL方法从语义引导角度出发,通过分析模型内部表征空间缓解LVLMs幻觉问题 [19] - 利用稀疏自编码器(SAE)识别"幻觉"和"真实"两种语义方向,在特定层进行针对性干预 [19] - 在视觉信息融合阶段注入真实语义方向增强视觉表示忠实性,在语言生成阶段抑制幻觉语义方向投影 [19] - SAE识别的语义方向在不同架构LVLMs中展现出良好跨模型迁移能力 [22] 实验结果 - 在MSCOCO数据集CHAIR评估中,VHR在InstructBLIP、LLaVA-1.5和LLaVA-NeXT模型上分别达到85.52、85.47和88.87分,优于其他基线方法 [17] - SSL方法在POPE数据集上取得显著F1分数提升,同时保持推理效率 [20] - VHR和SSL方法均保持高效性,几乎不增加额外时间开销 [16][20]