Adaptive Allocation Engines
搜索文档
2025 全球机器学习大会-巴黎会议图文总结-Global Machine Learning Conference - 2025_ Paris Conference Summary through Illustrations
2025-12-02 14:57
会议与行业概览 * 会议为摩根大通第八届全球机器学习会议 于2025年11月25日在巴黎办公室举行[4] * 会议吸引了约140名投资者 代表约80家全球机构[4] * 会议内容聚焦于人工智能和机器学习在金融服务与投资管理领域的应用、挑战与趋势[5] 核心观点与论据 人工智能技术演进与实施 * **智能体人工智能**正在转变企业价值创造 要求组织重塑团队技能、管理技术债务并调整商业模式以适应创新[10] * 从预测性和生成式人工智能向智能体系统的转变带来了自主决策 这要求强大的治理、可观测性和评估[10] * **大型语言模型**在自然语言理解和沟通方面非常有效 但缺乏复杂推理和最优规划的正式保证[29] * 将大型语言模型与经典人工智能、数据库和规划工具相结合 通过提示、检查器和专用智能体的流程 能为时序问答、时间序列分析和自动化操作编排等任务提供更可靠的解决方案[29] 数据、建模与投资组合管理 * 生成对抗网络和变分自编码器等生成模型为模拟金融时间序列和投资组合回报提供了有前景的方法 但面临数据有限、非平稳性和复杂资产结构的挑战[15] * 合成数据的准确性受限于初始样本 生成过多数据可能引入偏差[15] * 标准模型关注高方差成分 这对于投资组合构建(尤其是需要低方差因子的多空策略)是次优的[15] * **自适应配置引擎**通过将基于启发式的投资组合构建与机器学习相结合 改善了战略资产配置 以应对市场不稳定性和估计误差[34] * 该框架使用多种启发式方法、多样化加权和崩盘保护 通过排序学习模型和多臂老虎机算法对策略进行动态排序[34] * **NeuralBeta**通过将回归与神经网络相结合来改进贝塔估计 而**NeuralFactors**则将因子分析扩展到处理生成建模和多样化特征[43] * 注意力机制和先进的损失函数进一步提高了准确性 表明混合经典与机器学习方法能为风险估计和投资组合优化带来最佳结果[43] 风险管理、合规与治理 * 金融机构在实施人工智能法规方面面临重大挑战 原因包括定义宽泛且不断演变、全球框架多样化以及跨司法管辖区合规复杂[20] * 关键主题包括风险管理、透明度以及基于角色的义务 特别是对于就业和信贷等高风险活动[20] * 有效的实施需要跨组织协作、扩大问责制以及与现有风险控制的整合[20] * 解决监管数据需求、平台战略以及适应不断变化的规则至关重要[20] * **负责任的人工智能实践**涉及隐私风险、用例评估以及广泛的风险分类 包括智能体攻击和运营弹性[25] * 自动化护栏和人在回路的策略可确保合规性、适应性和安全执行[25] 投资管理中的Alpha来源与趋势 * 小组讨论探讨了投资管理中的Alpha是更多由另类数据还是机器学习驱动 强调了处理原始和非结构化数据、构建定制因子以及确保数据质量的重要性[52] * 讨论涉及整合机器学习的挑战、对速度和可解释性的需求 以及情绪和输出在不同语言和方法之间的差异[52] * 高质量的数据和先进的机器学习对于可持续的Alpha都至关重要[52] * 讨论强调了从原始数据到投资过程中可操作知识的持续演进[52] * 炉边谈话强调了人工智能在投资管理中不断演变的角色 强调可解释性、信任和数据质量[39] * 关键点包括采用人工智能的动机、拥抱不确定性的重要性 以及将复杂财务决策委托给人工智能系统的风险[39] * 讨论涉及大型语言模型在推理方面的局限性、较小模型日益增长的有效性 以及提取新数据源(如税务数据)的必要性[39] * 谈话还强调减少对相关性的依赖、弥合研究与实践之间的差距 以及构建可信、可审计的人工智能系统以支持未来投资策略的重要性[39] 人工智能在保险领域的价值与风险 * 人工智能正在通过自动化、优化和预测分析改变保险业 但也带来了需要仔细管理的技术和社会风险[48] * 人工智能被用于定价、理赔、保单比较和风险提取 利用机器学习和计算机视觉[48] * 人工智能保险的兴起解决了模型腐败、对抗性攻击和合规等问题 但由于动态风险和有限数据 也带来了新的承保挑战[48] * 这推动了专注于人工智能资产保护、性能和责任覆盖的新风险框架和保险产品的开发[48] 其他重要内容 * 会议采用现场插画师记录每场演示的要点和精髓[4] * 摩根大通全球股票研究评级分布显示 截至2025年10月4日 其覆盖范围内股票评级为增持、中性和减持的比例分别为50%、38%和12%[61] * 报告末尾包含广泛的法律实体披露、地区特定披露以及免责声明 强调了研究的独立性、潜在利益冲突以及报告的分发限制[57][58][59][60][61][62][63][64][65][66][67][68][69][70][71][72][73][74][75][76][77][78][79][80][81][82][83][84][85][86][87][88][89][90][91][92][93][94][95][96][97][98][99][100][101][102][103][104]