Workflow
Gaussian distribution
icon
搜索文档
Diffusion/VAE/RL 数学原理
自动驾驶之心· 2025-07-29 08:52
Diffusion Model - 扩散模型通过高斯分布的均值(原图提供)和方差(噪声系数提供)进行图像生成 [3] - 模型推导中关键变量α_t与噪声ε_t的线性组合服从N(0,1-α_tα_{t-1})的正态分布 [5] - 网络训练目标是拟合去噪过程中两个高斯分布的均值和方差 [7] - 通过KL散度项拟合理论去噪值与网络预测值 [9] - 将不确定的x_0转化为可预测的噪声ε进行迭代 [15] - 最终模型将分布拟合问题转化为噪声预测问题 [17] VAE模型 - 变分自编码器假设潜在空间服从高斯分布 [19] - 普通自编码器不具备生成能力 [21] - 使用神经网络拟合编码器 [23] - 通过重建损失+KL约束损失避免潜在空间退化 [26] - 最小化KL损失等价于最大化ELBO [27] - 训练过程包含重建损失和KL损失的平衡 [30] 强化学习 - 马尔可夫决策过程描述为状态-动作序列(s1,a1,s2,a2...) [35] - 表征学习分为语义表征(趋近脉冲分布)和生成表征(趋近高斯分布) [36] - 时间差分方法利用后续更准确的结果更新前期估计 [40] - 策略梯度方法学习最优状态-动作转换策略 [42] 自动驾驶行业 - 行业社区规模达4000人,涵盖300+企业和科研机构 [42] - 技术栈覆盖30+方向包括感知/定位/规划控制等领域 [42] - 重点技术包含BEV感知、多传感器融合、轨迹预测等 [42] - 专业课程覆盖端到端自动驾驶、大模型应用等前沿方向 [42]