Workflow
Physical Layer (PHY)
icon
搜索文档
重要芯片技术,常被忽视
半导体行业观察· 2025-07-19 11:21
物理层(PHY)的核心作用 - 物理层是OSI七层模型的基础组件,负责处理比特、字节和信号的物理传输,包括无线电、电线、光纤等介质[3] - 物理层已成为数据中心、AI和高性能计算的关键推动者,需满足海量带宽、超低延迟和能效需求[3] - 行业从二进制逻辑转向复杂物理设备时面临自然限制,如状态转换延迟和背景噪声影响信道容量[3] 物理层标准与应用 - 物理层标准多样化,包括USB、PCIe、以太网等,各标准针对特定场景设计,组合使用会增加成本[4] - HDMI与DisplayPort的案例显示,物理层组合需权衡SoC成本与功能需求,高端市场需多协议支持[5] - 标准制定允许供应商差异化竞争,同时降低系统功耗和成本[4] 低功耗与高带宽需求 - 移动设备、AR/VR、物联网等领域需超低功耗物理层以控制散热,否则影响产品商业化[6] - 过去20年USB和以太网带宽增长100-200倍,技术从NRZ转向PAM4等调制方式以提升数据速率[7] - AI计算需求推动接口速度升级,PAM4/PAM8等技术成为解决高带宽瓶颈的关键[7] 超高速PHY设计挑战 - 100G以上PHY设计需应对PAM4信令、亚皮秒抖动和信道损耗等尖端技术难题[8] - 工艺技术选择需平衡密度与模拟性能,信号完整性、电源完整性和系统集成成为关键约束[8] - 2.5D/3D封装技术引入中介层等组件,PHY需在硅片和封装层面协同仿真[8] 芯片间通信与3D集成 - UCIe等标准推动芯片间高带宽低功耗互连,3D系统通过中介层技术实现高效分解[9] - 物理层需弥合模拟与数字工程师的协作鸿沟,系统级优化可提升整体性能[10] - 物理层选择需评估数据对称性、通道数量、延迟等参数,并与外部接口兼容[10] 未来趋势与战略意义 - 行业向448G及以上标准演进,芯片分解、光学I/O和AI原生架构加剧技术挑战[11] - PHY从管道转变为战略赋能器,需持续突破技术界限以支持AI/HPC需求[11]