Workflow
virtual cell
icon
搜索文档
对谈斯坦福 Biomni 作者黄柯鑫:AI Scientist 领域将出现 Cursor 级别的机会|Best Minds
海外独角兽· 2025-06-20 19:18
AI+生物领域发展现状 - 语言模型和agent技术正在从通用领域快速渗透到生物医药等高价值垂直领域 [3] - AI scientist agent能够自主提出假设、设计实验并循环修正,正在改写科研和药物开发范式 [3][19] - 前谷歌CEO投资的FutureHouse推出四款AI scientist agent,并宣称其AI系统Robin成功发现新药 [3][25] - OpenAI近期强调AI在生物学领域能力不断增强 [3] AI scientist的本质与特点 - AI scientist本质是agentic system,能够模拟人类科学家的"假设-实验-观察"循环 [19][21] - 与通用agent相比,AI scientist需要专业环境和专家know-how支持 [28] - 当前阶段AI scientist主要实现任务自动化,未来目标是实现完全自主的科学发现 [21][29] - AI scientist可以使用AlphaFold等工具完成任务,两者是互补关系 [53] 通用agent的局限性 - 通用agent缺乏生物学专业环境和工具整合 [28] - 生物学领域存在大量未记录的专家隐性知识 [28] - 科研探索需要严谨性、创造力和长期规划能力,这些都是当前agent的短板 [28] - 生物研究任务高度分散,需要跨学科交叉研究能力 [37] Biomni系统的创新 - Biomni构建了集成数百种专业工具、数据库与软件的开放环境 [34][38] - 通过文献挖掘和Action Discovery agent发现新工具资源 [38] - 采用code as action设计,使agent能够灵活处理复杂任务 [38] - 在湿实验protocol设计和数据分析等任务上显著提升效率 [39] - 未来计划引入强化学习让agent自主学习和优化解决方案 [48] AI for Science的商业机会 - 生物医药研发存在数千亿美元市场,AI可大幅提升效率 [77] - AI scientist可能带来类似Cursor或Devin的创业机会 [77] - 未来可能出现"一人+多个agent"运营的虚拟药企模式 [79] - 药企对AI接受度提高,开始使用ChatGPT等工具辅助工作 [81] 行业挑战与未来方向 - 生物学数据获取成本高,是主要瓶颈 [62] - 需要设计适合生物学特点的benchmark评估体系 [70] - 强化学习在生物学应用需要明确定义的reward系统 [50] - 终极目标是AI scientist实现诺贝尔奖级别的科学发现 [90]
Recursion(RXRX) - 2024 Q4 - Earnings Call Transcript
2025-02-28 22:30
Recursion Pharmaceuticals (RXRX) Q4 2024 Earnings Call February 28, 2025 08:30 AM ET Company Participants Chris Gibson - Co-Founder & CEOLina Nilsson - SVP Head of PlatformBen Taylor - CFO & President Recursion UK Chris Gibson Welcome everybody to Recursion's learnings call. I'm Chris Gibson, cofounder and CEO, and I'm excited to take you through Recursion's twenty twenty four, twenty twenty five, and the time ahead. So with that, we'll jump into the slides. And I wanna just set the stage, first of all, to ...