分层推理模型(HRM)

搜索文档
只用2700万参数,这个推理模型超越了DeepSeek和Claude
机器之心· 2025-06-30 18:23
大模型架构变革 - 当前大语言模型(LLM)采用思维链(CoT)技术存在任务分解复杂、数据需求大、高延迟等问题 [2] - 分层推理模型(HRM)通过循环架构实现高计算深度,仅需2700万参数和1000个训练样本即可在复杂推理任务中表现卓越 [3][4] - HRM无需预训练或CoT数据,在数独、迷宫路径查找等任务中达到近乎完美性能,并在ARC-AGI基准上超越更大模型 [5][7] HRM设计原理 - 核心灵感源于大脑分层处理和多时间尺度机制:高级模块负责抽象规划(慢速),低级模块处理细节计算(快速) [12][13] - 采用四个可学习组件(输入网络、高低级循环模块、输出网络)实现层级收敛性,H模块稳定收敛,L模块周期性重置 [14][15][17] - 通过一步梯度近似法(O(1)内存)和深度监督机制优化训练效率,避免传统BPTT算法的深层信用分配难题 [19][20][23] 性能与实验验证 - 在ARC-AGI、数独、迷宫任务中,HRM表现出类似深度优先搜索和渐进优化的底层推理算法 [31] - 训练后高层模块与低层模块自然涌现维度层级分化,而非架构固有特性 [33][34] - 具备图灵完备性,可模拟任何图灵机,通过自适应计算时间(ACT)动态调整资源分配 [35][36][27] 技术对比优势 - 相比CoT模型,HRM在符号树搜索任务(如Sudoku-Extreme)中准确率接近100%,而标准Transformer增加深度无效 [10] - 强化学习(RL)需依赖CoT能力且数据效率低,HRM通过密集梯度反馈实现连续空间运算,生物合理性更高 [37][39] - 推理阶段仅需调整计算限制参数Mmax即可扩展性能,无需重新训练 [28]