Autonomous Driving System

搜索文档
Mercedes mulls investment in Geely-backed smart driving firm, Bloomberg reports
Reuters· 2025-09-24 18:29
Mercedes-Benz Group is preparing to invest in Geely-backed autonomous driving system developer Chongqing Qianli Technology , Bloomberg reported on Wednesday. ...
一边是毕业等于失业,一边是企业招不到人,太难了。。。
自动驾驶之心· 2025-07-23 17:56
自动驾驶行业现状 - 自动驾驶行业面临人才供需失衡,企业招聘需求旺盛但匹配度高的顶尖人才稀缺 [2] - 行业资本趋于理性,公司更注重商业化落地和盈利而非盲目扩张 [2] - 技术栈虽完备但距离大规模低成本商业化仍有工程鸿沟 [3] - 企业招聘标准提高,对技术适配性和前沿研究能力要求严格 [3][4] 自动驾驶技术社区 - 自动驾驶之心知识星球已成为国内最大技术社区,拥有4000+成员和100+行业专家 [7][9] - 社区覆盖30+技术方向学习路线,包括BEV感知、Occupancy、端到端驾驶等前沿领域 [9][69] - 与主流自动驾驶公司建立内推渠道,提供简历直达服务 [8][10] - 每周活跃度位居国内前20,形成学术与产业界的深度互动 [10][71] 技术研究方向 视觉语言模型(VLM) - 涵盖预训练、迁移学习、知识蒸馏等完整技术链条 [15][16][17] - 主流数据集包括LAION5B(50亿图文)、Conceptual 12M(1200万图文)等 [19] - 应用领域覆盖智能交通车辆检索、自动驾驶场景理解等 [27][28] 世界模型 - 聚焦驾驶场景生成与预测,代表工作包括HERMES、DriveDreamer等 [34][36] - 实现3D场景理解与生成的统一,提升自动驾驶系统泛化能力 [34][36] - 2024年涌现InfinityDrive等突破性模型,解决长序列预测难题 [36] 扩散模型 - 在3D重建、视频生成领域形成完整技术体系 [37][42] - DrivingDiffusion等框架实现时空一致性驾驶场景生成 [43] - 应用于数据增强,如Cityscape-Adverse模拟八种恶劣条件 [43] 端到端自动驾驶 - 形成从模仿学习到强化学习的完整方法论 [49][55] - 主流方案融合多模态输入,如DriveGPT4实现可解释决策 [31][55] - 面临开环评估与真实场景的差距挑战 [49][52] 行业应用与数据集 - 专用数据集覆盖200+任务,包括NuScenes(1000小时)、Waymo Open(1200万帧)等 [25][26] - 语言增强系统实现自然语言导航与车辆控制 [26][29] - 决策控制领域涌现GPT-Driver等大模型驱动方案 [29][30]
2025秋招开始了,这一段时间有些迷茫。。。
自动驾驶之心· 2025-07-08 15:53
自动驾驶行业就业趋势 - 双非研究生在自动驾驶和具身智能领域面临就业挑战,需提升技术实力和背景竞争力 [2] - 行业需求集中在端到端、大模型、VLA、强化学习、3DGS等前沿方向,传统技术人才已相对饱和 [3] - 机器人/具身智能初创公司融资活跃,技术栈培养全面,深圳、杭州是产业聚集地 [3][4] 技术发展方向 - 视觉大语言模型、世界模型、扩散模型和端到端自动驾驶是四大前沿技术方向 [8] - 视觉大语言模型领域涵盖预训练、迁移学习、知识蒸馏等技术,涉及图像分类、文本检索、行为识别等任务 [10][13][14] - 世界模型在自动驾驶中实现3D场景理解和生成一体化,如HERMES、DrivingGPT等模型 [31][32] - 扩散模型应用于自动驾驶视频生成、3D视觉、轨迹预测等领域,技术成熟度快速提升 [33][35][40] 数据集与评估体系 - VLM预训练数据集规模从百万级到百亿级,如LAION5B含50亿图文对,WebLI含120亿数据 [16] - 自动驾驶专用数据集覆盖2D/3D目标检测、语义分割、轨迹预测等任务,如NuScenes、Waymo Open Dataset等 [22][23] - 评估指标包括mAP(目标检测)、mIoU(语义分割)、Recall(文本检索)等,不同任务有标准化测试集 [17][20][21] 应用领域创新 - 智能交通领域采用语言引导的车辆检索技术,如Multi-granularity Retrieval System提升自然语言交互能力 [24] - 自动驾驶感知系统集成VLM技术,实现开放词汇检测(OpenScene)和语言引导3D检测(Language-Guided 3D Object Detection) [25] - 决策控制系统结合LLM,如GPT-Driver、DriveGPT4实现可解释的轨迹规划和运动控制 [26][27] 端到端自动驾驶进展 - 端到端方法整合感知、预测、规划模块,DriveGPT4、DriveMLM等模型实现行为状态对齐 [28][48] - 技术挑战包括长尾分布处理(BEVGPT)、开环控制优化(MiniDrive)和安全性验证(CAT) [50][56] - 行业报告指出端到端技术需平衡模块化与一体化,特斯拉FSD验证了大规模数据驱动的可行性 [45] 行业资源与社区 - 知识星球提供自动驾驶课程、硬件代码资料及招聘信息,已吸引华为天才少年等专家加入 [5][60] - GitHub资源库汇总Awesome系列,如Awesome-Diffusion-Models、Awesome-End-to-End-Autonomous-Driving等 [34][42] - 学术会议(CVPR、ICRA)设立自动驾驶专题研讨会,推动技术标准化和产学研合作 [46]
双非研究生,今年找工作有些迷茫。。。
自动驾驶之心· 2025-06-30 13:51
自动驾驶与具身智能行业趋势 - 自动驾驶和具身智能公司对人才要求较高,倾向于招聘实力强、背景好的同学[2] - 行业技术方向正从传统方法向端到端、大模型、VLA、强化学习、3DGS等前沿领域转型[3] - 机器人初创公司融资活跃,未来几年发展前景可观[3] 职业发展建议 - 双非背景同学可考虑SLAM和ROS方向,从事机器人/具身智能相关的优化、集成类工作[3] - 建议关注机器人公司,虽然工作较苦但能学习到实打实的技术栈[4] - 具身智能是最前沿方向,但传统机器人仍是产品主线[4] 技术社区资源 - 知识星球提供自动驾驶视频课程、硬件及代码学习资料,以及全栈学习路线图和招聘信息[5] - 社区已形成学术+产品+招聘的完整链路,包含课程、硬件和问答闭环[5] - 社区关注行业技术动态、技术分享、讨论和求职信息,聚焦具身智能与自动驾驶结合等前沿话题[5] 前沿技术方向 - 四大前沿技术方向包括视觉大语言模型、世界模型、扩散模型和端到端自动驾驶[7] - 视觉大语言模型领域有多篇CVPR 2024论文,涉及预训练、迁移学习等方向[11][12] - 扩散模型在自动驾驶中的应用包括场景生成、数据增强等方向[38][39] 数据集资源 - VLM预训练数据集规模从百万级到百亿级不等,最大达12B样本[15] - 自动驾驶数据集涵盖2D/3D目标检测、语义分割、目标跟踪等任务,时间跨度从2009到2024年[21] - 语言增强的自动驾驶数据集支持文本解释、视觉问答等任务[22] 应用领域进展 - 智能交通领域主要研究语言引导的车辆检索和视觉问答技术[23] - 自动驾驶感知方向聚焦行人检测、目标指代等任务[24] - 定位规划领域探索语言引导导航和运动规划技术[25] - 决策控制方向研究大语言模型在自动驾驶决策中的应用[26] 端到端自动驾驶 - 端到端方法整合感知、预测和规划模块,实现自动驾驶全流程[27] - 相关研究关注模型可解释性、行为规划和场景生成等方向[45] - 世界模型在端到端驾驶中发挥重要作用,支持场景理解和生成[30][50]