EvolKV

搜索文档
将KV Cache预算降至1.5%!他们用进化算法把大模型内存占用砍下来了
机器之心· 2025-09-14 13:16
核心技术创新 - 提出EvolKV进化框架 仅使用完整KV cache预算的1.5%即可实现超越完整模型的性能表现 大幅降低大语言模型推理成本 [1][6][11] - 采用任务驱动的进化算法优化KV cache分配 通过下游任务性能反馈自适应调整每层缓存预算 突破传统基于规则启发式方法的局限性 [4][6][13] - 将层分组优化与黑盒进化搜索结合 在减少搜索空间的同时实现细粒度性能感知分配 支持多样化评估标准包括准确率和F1分数 [6][9][16] 性能表现 - 在Needle-in-a-Haystack基准测试中比最佳基线提升多达13% 在RULER基准测试中提升多达3.6% [11][31] - LongBench评估显示在128到2048的KV cache预算范围内持续优于所有基线 在GSM8K数学任务中128预算下比最强基线准确率提升7个百分点 [11][25] - Mistral-7B-Instruct模型在多个子数据集(MultiFieldQA-en/2WikiMultihopQA/MuSiQue等)上不仅保持完整模型竞争力 甚至在某些预算下实现超越 [22] 方法架构 - 设计缓存效率评分机制CacheScore ∈ [0,1] 通过平滑折扣函数确保方案平均预算接近目标值c 超参数λ平衡原始性能与缓存效率 [14][15] - 采用层分组策略将L个transformer层划分为J=⌈L/n_g⌉个连续组 显著降低搜索维度并优化稳定性的同时保持细粒度控制 [16] - 通过迭代进化算法逐组优化 固定已优化组参数并动态更新未优化组 最终通过比例补全机制确保总预算精确匹配目标值 [17][20] 实验结果 - 在Llama-3-8B-Instruct上TREC子集128预算时比最强基线高7.69个百分点 在GSM8K任务中512预算下达到完整模型95.7%性能 显著优于基线84.5% [23][25] - 可视化显示不同预算下KV cache分配呈非均匀模式 验证了模型不同层级在信息处理中的功能差异性 [7][27][28] - RULER基准测试表明优化策略具备强泛化能力 迁移到其他评估场景仍保持性能优势 在Mistral-7B-Instruct上提升0.99分 Llama-3-8B-Instruct提升3.6分 [31]