HOPE架构
搜索文档
LLM 语境下,「持续学习」是否是 「记忆」 问题的最优解?
机器之心· 2025-11-16 09:30
LLM语境下持续学习与记忆问题 - 谷歌提出嵌套学习范式将模型视为一系列嵌套问题堆叠旨在学习新技能同时规避灾难性遗忘问题[6] - 嵌套学习核心论点在于机器学习模型由多个相互关联层次分明优化子问题组成将模型优化器与记忆统一看作多级并行带独立上下文流优化问题[6] - 基于嵌套学习原理研究者设计HOPE架构在语言建模长上下文推理持续学习与知识整合任务上较Transformer++等基线模型表现出更低困惑度与更高准确率[7] - AI社区存在争议认为嵌套学习类似已有技巧叠加如2020年ModNet和2024年ACh和NA框架等多尺度持续学习并非全新概念[8] - 持续学习核心挑战是解决灾难性遗忘即智能系统学习新任务时避免覆盖旧任务知识LLM时代表现为模型降智如领域SFT训练导致通用基准测试性能下降[8] - 当前LLM研究焦点偏向通过改善记忆力使智能体保留情景经验语义知识和程序技能设想跨持久智能记忆层包含Model Weights层KV Cache层和Context层[8] 从行为数据到AI记忆的路线 - 产品方强调更懂你资本强调难以复制引发AI产品护城河是否真实存在讨论不同产品在记什么记多久上押注不同方向[1] - 医疗对话记忆能否作为知识库提升诊疗质量探讨软件被动记录无法覆盖全部生活场景需借助硬件实现always on模式[1] 合成数据与人形机器人发展 - 合成数据被视为数据金字塔中坚力量DARPA寒冬已过人形机器人迎来技术和市场双重爆发[2] - 人形机器人利用以人为中心数据源真实数据虽是黄金标准但被称为最大瓶颈GenAI指数引擎是否创造有用数据受关注[2]