StyleDrive

搜索文档
自动驾驶论文速递 | 世界模型、VLA综述、端到端等
自动驾驶之心· 2025-07-02 15:34
世界模型Epona - 地平线、清华、北大等团队在ICCV'25中稿的自回归扩散世界模型工作,可以不依赖视频预测独立输出轨迹规划 [2] - 算法框架采用自回归扩散模型,实现长时间生成和实时轨迹规划 [3] - 实验结果:FID T为7.5,FVD T为82.8,最大持续时间达120秒/600帧,显著优于对比模型DriveGAN、DriveDreamer等 [5] - 核心优势:实现2分钟长时间生成,20Hz实时轨迹规划,连续视觉标记器保留丰富场景细节 [6] 视觉-语言-动作模型综述 - 麦吉尔大学、小米等团队发布VLA模型综述,涵盖DriveGPT-4、ADriver-I等15种模型 [13] - 模型对比表显示:输入类型包括单/多模态,数据集涵盖BDD-X、nuScenes等,输出包含轨迹规划(LLC/Traj) [18] - 最新模型如OpenDriveVLA(2025)支持2D/3D对齐,ORION(2025)实现连续动作推理 [18] StyleDrive基准测试 - 清华AIR等团队提出驾驶风格感知的端到端自动驾驶评测框架 [20] - 基于规则的驾驶风格分类标准覆盖10种交通场景,包括车道跟随、交叉路口等场景的动态特征 [22] - 实验结果:DiffusionDrive-Style模型表现最佳,SM-PDMS达84.10,优于TransFuser(81.09)和WoTE(81.38) [23] 技术社区推广 - 知识星球提供自动驾驶全栈学习路线图、硬件/代码资料及行业招聘信息 [9] - 社区目标3年内建成万人规模,已吸引华为天才少年等专家加入,形成"课程+硬件+问答"闭环 [25]