Workflow
ThinkDiff
icon
搜索文档
ICML 2025|多模态理解与生成最新进展:港科联合SnapResearch发布ThinkDiff,为扩散模型装上大脑
机器之心· 2025-07-16 12:21
多模态理解与生成技术进展 - 当前文本到图像生成技术如Stable Diffusion和Flux缺乏真正的多模态推理能力,难以理解图像与文本的复杂逻辑关系[1] - OpenAI的GPT-4o和Google的Gemini Pro展示了强大能力,但依赖超大规模参数和算力资源[2] - 香港科技大学与Snap Research提出的ThinkDiff方法,仅需少量数据和数小时训练即可实现多模态推理式生成[3] ThinkDiff核心技术 - 核心创新在于将视觉语言模型(VLM)的推理能力迁移至扩散模型,结合两者优势实现高质量生成[7] - 利用LLM与Diffusion共享特征空间的特性,通过代理任务将VLM与LLM解码器对齐[9][11] - 采用掩码训练策略强制对齐网络深度理解多模态信息,避免特征对齐走捷径[15] 模型架构与变体 - ThinkDiff-LVLM版本继承大型视觉语言模型的多模态理解能力[16] - ThinkDiff-CLIP版本强化文本图像组合能力,可扩展至视频生成领域[16][34] - 网络设计关键:对齐VLM自回归生成的tokens特征而非输入tokens,实现真正的推理能力传递[15] 性能表现 - 在CoBSAT基准测试中全面领先:Color-I准确率0.638(较SEED-LLaMA提升32.4%),Action-II准确率0.664(提升220.8%)[19] - 训练效率显著:仅用4块A100训练5小时即达0.463平均准确率,远优于需64块A100训练216小时的SEED-LLaMA[21] - 定性测试显示其生成质量与商业模型Gemini相当,且具备视频生成扩展能力[25][34] 行业影响 - 突破性解决低资源环境下的多模态推理难题,为学术研究和工业应用提供新路径[3][36] - 开创扩散模型理解复杂图文组合的新范式,显著提升生成式AI的语义理解深度[7][15] - 技术方案具备高度可扩展性,可适配不同VLM架构并延伸至视频生成领域[16][34]