Workflow
Zilliz Cloud
icon
搜索文档
Agentic AI时代,向量数据库成“必选项”
钛媒体APP· 2025-12-05 13:18
行业趋势与市场前景 - Agentic AI(代理式AI)的兴起正在对底层数据库基础设施提出全新要求,向量数据库从幕后走向台前,成为支撑下一代智能体系统的关键基础设施 [1] - 生成式AI以内容创造为核心,Agentic AI以自主决策交互为特征,二者的演进推动向量数据库从基础存储检索工具向AI能力基座升级 [2] - 据Gartner预测,2025年Agentic AI市场规模将突破千亿美元,年复合增长率超65% [2] - 据Gartner预测,到2028年,支持生成式AI的数据库支出将达2180亿美元,占市场74% [3] - 2024年全球云数据库管理系统收入占比已达64%(766亿美元),贡献了89%的市场增量,云已成为数据库的主流部署环境 [13] Agentic AI对数据库的核心需求 - Agentic AI的核心特征是自主目标驱动,能够理解复杂需求、拆分任务流程、调用外部工具、实时调整策略,这彻底改变了传统RAG被动、静态、低频的调用模式 [2] - 对读写性能要求极高:Agent在单次任务中可能产生数十次读写操作,调用记忆模块的频次和数据更新速度远超传统RAG场景 [5] - 需支持“千人千面”的个性化数据存储:为每个用户生成独立的行为轨迹、偏好向量等,向量数据动辄达到百亿量级 [6] - 需在成本与性能间实现平衡:要求数据库具备智能化的数据生命周期管理,实现热数据高性能访问,冷数据低成本存档 [6] - 需具备多模态融合处理能力:能够同时处理文本、图像、地理位置、用户行为等多种信号的向量,并实现跨模态关联检索 [7] 向量数据库的核心价值与功能 - 向量数据库的核心价值在于高效检索“语义相似性”,擅长处理非结构化或半结构化数据编码生成的高维向量,以找出最相似的Top-K个向量 [9] - 作为大语言模型的记忆体,以极具性价比的形式提供存储功能,在减少大模型开发成本的同时提高其性能 [9] - 为对数据隐私有需求的企业提供了存储和管理企业知识的不二选择 [9] - 为Agentic AI提供四大不可替代的价值:构建可扩展的认知记忆、实现低延迟的经验检索、支撑多Agent的集体协作、降低AI落地的信任门槛 [9][10] - 具体技术优势包括:分布式架构支持百亿级向量存储、配合冷热分层、AutoIndex技术使查询性能提升3-5倍、支持BYOC方案满足合规要求 [9][10] 公司(Zilliz)产品与战略 - Zilliz是全球首个向量数据库企业,创造了开源向量数据库Milvus,并推出商业版Zilliz Cloud [3] - 公司产品Milvus及Zilliz Cloud是为数不多能处理百亿量级个性化向量数据的产品 [6] - Milvus针对高性能读写做了大量优化,并推出了内存-磁盘-对象存储的多层存储方案以平衡成本与性能 [5][6] - Milvus自2.4版本开始支持多向量列及各种标量数据,积累了稠密向量、稀疏向量、二值型向量等向量类型数据,以及地理位置、标签等标量类型数据的支持 [7] - 公司采用开源Milvus与闭源Zilliz Cloud“双管齐下”的商业模式,两者完全接口兼容,企业可平滑迁移,迁移成本几乎为零 [10][12] - 公司定位在AI基础设施层,将向量数据库作为连接大模型与垂直场景的关键齿轮 [10] 公司(Zilliz)合作伙伴与云协同 - Zilliz自2021年起与亚马逊云科技展开深度合作,目前是其最高等级的第三方合作伙伴,合作涵盖技术适配、产品集成、市场推广、客户服务等多个层面 [13] - 基于Amazon EC2丰富的实例类型,Zilliz Cloud提供了性能型、容量型等多套深度优化的解决方案 [13] - 基于Amazon EKS的容器化自动扩缩容能力,Zilliz Cloud可动态应对流量高峰 [14] - Zilliz Cloud适配了支持Amazon Graviton处理器的实例,可将成本优化提升20%以上,并显著提升性能 [14] - 客户可利用亚马逊云科技在模型服务层的优势,通过Amazon Bedrock调用领先的大语言模型和嵌入模型 [14] - 亚马逊云科技Marketplace为Zilliz导入大量用户,其中包括许多国内AI出海企业 [15] - 合作是双向的,Zilliz Cloud的高性能向量搜索能力也为亚马逊云科技企业客户带来商业影响,并引导用户使用SageMaker、Bedrock等亚马逊云科技AI产品 [15] 应用案例与成效 - 在电商智能客服场景中,Agentic AI需在毫秒级内完成海量非结构化数据的检索与关联,传统数据库无法承载 [8] - 在HR领域,智联招聘与Milvus合作,采用向量召回技术提升招聘匹配效率 [11] - 在传媒领域,搜狐新闻利用Milvus分布式向量检索引擎,使向量检索速度提升10倍,新闻分类准确率提高至95%,并减少了内存占用 [11] - 某电商客户图搜场景实现<30毫秒响应 [10] - 某头部电商在业务高峰期将自建Milvus集群切换到Zilliz Cloud,以解决稳定性与性能调优瓶颈 [12] - 美国法律AI SaaS公司Filevine使用Zilliz Cloud使海量法律文档可快速搜索,将研究时间从数小时缩短至数分钟,这得益于Zilliz Cloud自研内核Cardinal相较开源Milvus 10倍的性能提升以及AutoIndex优化 [16]