incident.io
搜索文档
组织能力才是 AI 公司真正的壁垒|42章经
42章经· 2025-09-26 16:33
AI Native研发工作流重构 - 默认所有研发工作由AI承担,人类仅在AI无法解决时补位,实现工作流根本性重构 [7] - AI Review将Code Review时间从传统的一两天缩短至10分钟,效率提升超过10倍 [3] - 约90%代码通过Linear管理任务并自动分配给Devin生成,工程师无需打开IDE [7] - 使用incident进行生产监控,可覆盖近一半监控需求,不再需要专职运维人员 [8] - 减少人工对齐,鼓励独立工作,将原则和想法写入codebase实现自动对齐 [10] AI Native人才要求 - 人类核心价值是成为Context Provider,为AI提供其不具备的行业知识和上下文 [12][13] - 需要Fast Learner,快速掌握最少必要知识以与AI高效沟通并激发其潜力 [14] - 每个人都应是Hands-on Builder,对全流程和最终结果负责,避免上下文传递导致的效率下降 [14][15] - 工程师需具备产品设计和go-to-market能力,直接获取客户反馈而非通过中间环节 [20] - 招聘通过take-home任务考察AI工具使用能力,如两天内构建复杂产品或一小时内优化埋雷项目 [38][39] AI Native组织模式 - 按结果分工而非按流程分工,小组具备全链路能力并对最终结果直接负责 [19][20] - 组织以工程团队为核心,工程团队利用工具快速上线60分版本,其他团队再优化 [22] - 未来组织形态可能是少量核心合伙人加大量灵活合同工,核心员工享受合伙人待遇 [24][25] - 公司20人规模下没有全职PM,工程师兼任PM工作,直接对接客户需求 [31] - 创业公司早期没有PM属正常现象,Mercor 150人规模时也只有2个PM [33] 行业趋势与挑战 - AI Native模式在硅谷初创公司中已成为发展方向,并非小众实践 [26] - 大厂推行AI Native组织模式困难,需考虑架构调整外的多种因素 [27] - 可能出现“一人独角兽”公司,几个人就能做出惊人产品,不再需要万人规模公司 [27] - AI不仅适用于从0到1场景,在复杂代码场景中人类提供高质量上下文是关键 [29][30] - 未来岗位界限模糊,PM和工程师都将成为Builder,只要能够Build出东西并对结果负责 [36]