Agentic AI技术发展 - Agentic AI具备感知、推理、决策与执行能力,成为全球科技巨头重点押注方向[1] - OpenAI推出ChatGPT Agent,xAI发布Grok 4,强调多智能体协同、原生联网、超大上下文能力[1] - 技术要素已集齐:大模型推理能力、标准协议支撑、低幻觉高效率运行、多智能体协同[3] - MCP协议成为Agent访问企业数据与调用API的通用接口[3] - 过去两年推理成本下降280倍,每百万token成本大幅降低[4] - 大模型幻觉率一年内降低50%,最领先模型幻觉率低于1%,结合RAG后可降至0.3%[4] 云厂商战略转型 - AWS发布Amazon Bedrock AgentCore、AI Agents Marketplace、Amazon S3 Vectors等关键产品,建立"智能体即服务"基础设施[2] - 云厂商角色从算力服务商变为智能服务商,从底层基础设施扩展为AI Agent新阵地[3] - 未来竞争焦点在于让Agent真正跑起来并在真实世界"做成事",而非仅比较模型强弱[3] - AWS引入Automated Reasoning Checks技术,通过数理逻辑判断拒绝幻觉结果[5] 行业应用进展 - 软件开发领域效率成倍提升,Amazon Q Developer支持从需求文档到部署全流程自动化[8] - 先进企业已实现90%新代码由AI生成,研发效率显著领先[14] - 编程工作从传统团队模式转向"产品经理+AI开发者"一对一协作[13] - 企业分为Speed 1(主动拥抱AI)和Speed 2(观望犹豫)两类,落地节奏差异显著[9][10] 市场预测与趋势 - Gartner预测到2028年代理型AI自主决策比例将从0%升至15%,企业软件应用比例从不足1%增至33%[2] - 技术采用曲线显示早期采用者已通过AI实现业务价值,观望企业可能丧失竞争力[14] - AWS在中国服务近万家客户,涵盖出海、入华及本土创新企业[14] - 多智能体协同开发代码量从3000行缩减至20行,技术门槛大幅降低[7]
专访AWS大中华区总裁储瑞松:Agentic AI在爆发前夜