大语言模型后训练强化学习技术演进 - 大语言模型后训练过程通过强化学习优化模型输出内容符合任务偏好 预训练使模型掌握通用语言能力 但后训练强化特定领域知识和应用能力 增强模型适应性和灵活性[5] - 强化学习核心是反馈机制 目标是增加好结果出现概率 降低坏结果出现概率 在大模型训练中采用人类反馈方式[5][8][9] PPO强化学习算法 - PPO采用近端策略优化机制 加入Critic价值函数和CLIP操作 保证策略更新不过度同时高效提升性能 成为强化学习领域标准方法之一[11] - PPO损失函数包含Critic价值函数评估相对进步程度 显著降低训练过程方差 同时采用Clip策略限制新策略相对于旧策略动作概率变化幅度 避免模型更新幅度过大[11][13] GRPO算法创新 - GRPO去除PPO中Critic价值函数 采用策略模型多次输出采样奖励平均值作为基准线 超过平均值视为正向Advantage 低于为负向Advantage 大幅降低内存需求和计算成本[14][16] - GRPO内存需求为基础模型0.5倍 训练速度比PPO快3-5倍 采用单策略网络架构 优势估计采用统计型群体投票方式[18] - GRPO存在严重稳定性问题 容易导致训练崩溃 需要大量数据降低策略梯度方差 中小规模训练中稳定性缺陷致命[18][19] DAPO算法改进 - DAPO在GRPO框架内进行工程改进 让Qwen2.5-32B模型在AIME 2024基准获得50分 优于同等规模DeepSeek模型 训练步数少50%[20] - 采用Clip-Higher机制将剪辑上下限解耦为ε_low和ε_high 增加ε_high值为低概率token留出更多空间 提升训练早期熵[21] - 实施动态采样过滤奖励为1和0的提示语 保留有效梯度样本 提高训练效率 采用Token级策略梯度损失保证长序列所有token公平贡献batch loss[21][22] GSPO范式突破 - GSPO将重要性采样从token级提升到序列级 基于整个序列似然度计算重要性比值 显著降低长序列中积累的高方差 提高训练稳定性[25][29][31] - 序列级重要性采样进行长度归一化 避免importance ratio对长度敏感造成不稳定 同一序列所有token共用同一重要性权重 裁剪时作用于整个回答而非部分token[31] - GSPO损失函数采用序列级重要性权重和clip操作 成为Qwen3强化学习核心实践框架 可能成为未来后训练强化学习新标准[25][31] GFPO多属性优化 - GFPO解决GRPO依赖单一标量奖励信号问题 可同时优化多个响应属性如简洁性和准确度 避免模型响应长度大幅增加[33] - 采用显式过滤机制为每个问题采样更大候选响应组 过滤不符合目标属性响应 在所选组内使用标准奖励计算相对优势 无需复杂奖励工程[33][34] - GFPO主要干预Advantage估计层面 可与任何GRPO类似方法兼容 包括DAPO或带有Dual-Clip PPO损失的GRPO[35] GRPO其他缺陷 - GRPO存在奖励歧义性问题 多个奖励信号被合并为单一标量信号 模型无法知道具体因什么行为被奖励 即使调整不同奖励组件权重仍只能看到总奖励[39][41] - 在推理任务中 GRPO丢弃所有中间文本反馈 仅使用数值化奖励信号 文字反馈对模型有帮助但完全无法利用[43] - 多轮推理任务中每轮反馈重新输入到基础模型prompt 导致指数级分支 使GRPO在多轮任务训练变得非常困难[44]
科普向:一文解构大模型后训练,GRPO和它的继任者们的前世今生