AI行业格局与竞争态势 - AI竞争比以往任何时候都激烈,市场已从简单的GPU演变为复杂的、持续进化的AI工厂,需要处理多样化的工作负载和呈指数级增长的推理任务 [1] - 竞争对手在构建更便宜的ASIC,但即使竞争对手将芯片价格定为零,客户仍然会选择英伟达系统,因为运营该系统的总成本更低 [4][69] - 谷歌拥有的优势是前瞻性,在一切开始之前就启动了TPU1,但当TPU成为一门大生意后,客户自有工具将成为主流趋势 [4][56] - 现在的AI竞争比以往任何时候都激烈,但也比以往任何时候都困难,因为晶圆成本越来越高,这意味着除非进行极限规模的协同设计,否则就无法实现X倍增长因子 [4][54] AI市场前景与增长预测 - 未来5年内,AI驱动的收入将从1000亿美元增至万亿美元级别,这一概率几乎是确定的,而且现在几乎已经达到了 [1][2][35] - 如果未来AI为全球GDP带来10万亿美元的增值,那么背后的AI工厂每年的资本支出需要达到5万亿美元级别 [1][4][30] - 人工智能大约占全球GDP的55-65%,也就是约50万亿美元,这50万亿美元将得到增强,很可能发生的是,那50万亿美元被10万亿美元增强 [13][29][30] - 每个国家都必须建设主权AI,没有人需要原子弹,但每个人都需要AI,每个国家都需要拥有一些主权能力并发展AI基础设施 [13][79][80] 英伟达与OpenAI的合作关系 - OpenAI很可能会成为下一个万亿美元级别的超大规模公司,英伟达唯一的遗憾是没有早点多投资一些,应该把所有钱都给他们 [1][4][47] - OpenAI想和英伟达建立起类似于马斯克和X那样的直接关系,包括直接的工作关系和直接的采购关系 [4][22][24] - 合作涉及帮助OpenAI首次为他们建设自己的AI基础设施,这是直接与OpenAI在芯片层面、软件层面、系统层面、AI工厂层面的合作 [19][20] - 10吉瓦大约需要4000亿美元的投资,这4000亿美元很大程度上需要通过OpenAI的承购协议来资助,也就是他们指数级增长的收入 [4][46] 英伟达的技术优势与战略 - 英伟达芯片的竞争优势在于总拥有成本,性能或每瓦token数是其他芯片的两倍,客户可以从他们的数据中心产生两倍的收入 [13][70] - 公司转向年度发布周期,从Hopper到Grace Blackwell,再到Vera Rubin、Ultra、Fineman,以实现指数的指数增长,使客户能够降低代币成本 [48][49][50] - 英伟达通过极限协同设计进行创新,必须同时优化模型、算法、系统和芯片,在数据中心级别的交换机、网络、软件等所有方面进行优化 [51][54][71] - 公司实际上是一家AI基础设施公司,是客户的AI基础设施合作伙伴,不要求客户购买所有产品,可以按照客户喜欢的任何方式销售 [75] 推理任务的演变与增长 - 如今超过40%的收入来自推理,但推理即将发生变化,因为推理链的出现,它即将增长十亿倍 [10][11] - 现在有三个缩放定律:预训练缩放定律、后训练缩放定律(AI练习)和推理缩放定律(思考型AI),而不是一个 [12][14][41] - 推理能力正经历第二个指数增长,从一次性的、记忆答案转变为思考型AI,计算量要大10亿倍 [41] - 旧的推理方式是一次性的,但新的推理方式是思考,在回答之前先思考,思考得越久,得到的答案质量就越好 [14] AI对经济和社会的影响 - AI技术带来的变化包括创造一个新的AI代理产业,OpenAI是历史上收入增长最快的公司,呈指数级增长 [33] - AI是最大的均衡器,消除了技术鸿沟,现在人们只需要学习人类语言就可以编程,每个人都必须参与 [81] - 智能不是零和游戏,周围的人越聪明,想法就越多,可以解决的问题就越多,创造的工作和就业机会就越多 [6][83] - 在接下来的5年里,真正酷且将被解决的事情之一是人工智能与机器人技术的融合,每个人都将在云端拥有自己关联的GPU [13][85] 供应链与产能挑战 - 全球的算力短缺不是因为GPU短缺,而是因为云服务厂商的订单往往低估了未来需求,导致英伟达长期处于紧急生产模式 [4][39] - 供应链已经准备好,从晶圆开始到封装、HBM内存等所有技术都已就绪,如果需要翻倍就可以翻倍,现在只是在等待需求信号 [39] - 云服务提供商、超大规模厂商提供的每一个预测都是错误的,因为他们预测不足,所以公司总是处于紧急模式 [39] - 为了每年进行数千亿美元的AI基础设施建设,需要提前一年开始准备大量产能,涉及数千亿美元的晶圆启动和DRAM采购 [53]
关于投资OpenAI、AI泡沫、ASIC的竞争……刚刚,黄仁勋回答了这一切