文章核心观点 - 世界模型被视为推动具身智能发展的关键路径,有望带来类似DeepSeek的低成本、高性能突破 [1][9] - 具身智能的复杂度远超自动驾驶,是智能系统的“天花板级”挑战,其发展更依赖长期数据积累而非短期突破 [7][8] - 公司通过“双模驱动”架构和引入奖励机制,在有限算力下开发出性能超越SOTA的世界模型 [9][10][11] 技术理念与方法 - 倡导“经验驱动”的控制方式,通过历史数据学习控制规律,而非依赖精确的数学建模 [3][4] - 以游泳运动员训练类比AI学习过程,强调通过反复实践积累经验而非先掌握理论 [5] - 在自动驾驶领域验证了端到端控制架构的有效性,并将其思路延伸至具身智能 [6] 世界模型的技术特点 - 采用世界模型与多模态大模型相互促进的“双模驱动”结构 [9][11] - 引入奖励机制和基于强化学习的微调,形成自我优化闭环 [9][10][11] - 使用GRPO算法微调多模态大模型,实现认知与物理交互的紧密闭环 [11][12] - 当前模型基于DiT架构,但未来可能迭代全新架构以更好捕捉物理规律 [19][20] 世界模型的应用价值 - 主要用途包括:与机器人大脑形成闭环、直接生成训练数据、作为机器人操作模型的一部分 [17] - 核心目标是提高机器人在开放环境中的泛化能力,这对商业和家庭场景至关重要 [21][22] - 通过蒙特卡洛树搜索等技术,让机器人在虚拟世界中模拟多种方案并选择最优路径 [11][17] 行业现状与挑战 - 具身智能尚未出现类似ChatGPT的“突破时刻”,数据量级、采集难度和成本远高于语言模型 [8][9] - 行业目前缺乏明确的Scaling Law,智能能力随数据、算力增长的规律未知 [13] - 世界模型在物理规律和时空一致性方面要求远高于视频生成模型 [18][19] - 具身智能落地将经历工业场景、商业场景、家庭生活场景三个阶段 [21]
独家|对话北京人形机器人创新中心CTO唐剑:世界模型有望带来具身智能的“DeepSeek时刻”