对当前主流AI发展路径的批判 - 核心观点认为大语言模型路线是死路,无法通往人类水平的人工智能,硅谷对不断“堆大”LLM的痴迷是一条死路 [1][3] - 指出当前基于LLM的AI智能体在可靠性、数据效率、多模态处理上远远不足 [12] - 批评行业存在危险的“羊群效应”,科技巨头几乎都在做同一件事即疯狂堆叠LLM,形成了“单一的文化” [26][28] - 明确表示所谓的ASI路线——不断训练LLM、用更多合成数据、雇几千人做后训练、折腾RL新技巧——完全是胡说八道且永远不可能成功 [1][28] 提出的替代技术路线:“世界模型” - 主张“世界模型”才是实现人类水平AI的“正确方法”,其能够预测动作后果并用于规划,是智能的重要组成部分 [12][14] - “世界模型”在抽象表征空间中进行预测,而非像素级输出,旨在处理高维、连续和嘈杂的模态数据,这是LLM完全做不到的 [3][14][23] - 其技术基础是联合嵌入预测架构,旨在学习一个抽象的表示空间以消除输入的不可预测细节 [16] - 近20年来一直确信构建智能系统的正确途径是通过某种形式的“无监督学习”,JEPA的发展克服了早期孪生网络的模型坍塌问题 [17] 关于数据与智能的对比 - 训练一个性能不错的LLM需要互联网上约30万亿Token的文本数据,这仅相当于约15,000小时的视频 [21][22] - 一个4岁孩子醒着时看到的视觉信息大约是16,000小时,现实世界数据的结构比文本丰富得多,仅靠文本训练永远无法达到人类水平的AI [22] - 合成数据有用,但LLM并不真正理解通过经验习得的基本概念,只是被微调出来给出正确答案,更像是“反刍”而非真懂 [25] 创业公司AMI的创立与目标 - 决定在Meta外部创办Advanced Machine Intelligence,专注于“世界模型”并计划延续开放研究的传统 [4][5] - 创办AMI的动因之一是为了摆脱硅谷的单一文化,该公司是全球性的,总部将设在巴黎,并在纽约等地设立办公室 [30] - AMI的目标不仅是研究,还会打造与世界模型、规划相关的实际产品,并成为智能系统的核心供应商 [9] - 认为投资者现在愿意为这类基础研究创业公司买单是一种新现象,这在以往是不可能的 [4] 对AI行业现状与Meta的评论 - 指出行业风向正在转变,越来越多实验室选择闭源,这种趋势不利于真正突破性的研究 [4] - 透露Meta AI重组后重心完全放在了LLM,FAIR正被推向“更短期的项目”,较少强调发表论文,更多专注于协助GenAI Lab进行LLM研究,这是其选择出来创业的部分原因 [39][41] - 认为即使在硅谷的各家公司内部,也有不少人心里很清楚LLM这条路走不通 [28] - 点评了一些大模型公司,例如指出Ilya创立的SSI甚至包括他们的投资人都不知道这家公司要做什么 [41] 对AGI概念与发展时间线的看法 - 认为“通用人工智能”这个概念完全没有意义,完全是胡扯,因为人类智能是超级专业化的 [31] - 乐观预测如果在JEPA、世界模型、规划等方向未来两年取得重大进展,可能在5-10年内看到接近人类或狗智能水平的AI,但这已是极度乐观 [33] - 更现实的预测是,由于历史上多次出现未预见的障碍,实现超越可能需要20年甚至更久 [33] - 认为最难的部分不是从狗到人类,而是达到狗的水平,从灵长类动物到人类主要缺的是“语言” [35][36] 对研究文化与人才培养的建议 - 强调真正的研究需要发表论文,没有别的办法,这是目前很多行业正在遗忘的事情 [11] - 建议年轻人学习“保质期长”的知识以及能“学会如何学习”的东西,因为技术演变太快 [43] - 具体建议深入学习数学、电气工程、机械工程、物理学等基础学科,计算机科学只需学到能熟练编程的程度,这些基础能让人在AI快速变化中站稳脚跟 [45][46] - 认为“世界模型”所在的地方类似于大脑的前额叶皮层,而LLM在语言编码/解码上表现不错,或许能充当大脑的韦尼克区和布罗卡区 [36][38]
倒计时3周离职,LeCun最后警告:硅谷已陷入集体幻觉