英伟达NitroGen模型的技术突破 - 公司发布名为NitroGen的新模型,其核心逻辑类似于特斯拉FSD的“端到端”模式,通过视觉输入直接产生操作输出,而非依赖游戏后台数据[1] - 模型通过观看YouTube和Twitch上总计4万小时带有手柄画面叠加的游戏实况视频进行学习,将游戏画面与手柄按键动作进行对应[3][7][10] - 该模型学习了超过1000款不同的游戏,旨在成为一个“通才”,而非针对单一游戏的“专才”[11] 模型性能与通用性 - 当被置于一款从未见过的新游戏中时,NitroGen的表现比从零训练的模型强了52%[14] - 模型能够处理多种游戏类型,包括动作RPG、平台跳跃和Roguelike等,并展现出快速上手的“游戏直觉”[11][14] 在游戏领域的应用与影响 - 结合类似GPT-5.2-Thinking等大模型的强大推理能力,NitroGen等技术预示着AI可能终结人类撰写游戏攻略和软件文档的时代[18] - 未来AI不仅能玩游戏,还能自动记录、复盘并生成“白金攻略”,甚至自动修复游戏Bug[18] - 视频游戏已从AI测试基准演变为物理智能的训练场,是机器人技术跨越“莫拉维克悖论”的关键转折点[25][26] 向机器人技术与具身智能的延伸 - NitroGen是基于英伟达的GR00T机器人基础模型构建的,标志着公司将其在虚拟世界的技术积累向物理机器人领域延伸的野心[20] - 该研究为解决具身智能的数据匮乏瓶颈提供了新路径:利用互联网规模的游戏视频数据(4万小时,覆盖1000多种游戏)来训练通用的运动控制策略,这被类比为机器人学习的“ImageNet时刻”[27][36][39][40] - 游戏世界中的“感知-决策-行动”闭环与物理机器人完全同构,是高效的“练兵场”,能为机器人打造应对混乱现实的“通用大脑”[22][29] 通用智能体的分层架构愿景 - 未来的通用智能体可能采用分层架构:顶层(大脑)由类似GPT-5.2的推理模型负责长程规划和逻辑理解;中层(小脑)由类似NitroGen的通用策略模型负责将指令翻译为具体运动轨迹;底层(脊髓)由基于GR00T的控制器负责高频的全身控制和平衡维持[43][44][45] - 通过“在游戏中学会控制,在仿真中学会物理,在现实中学会适应”的路径,实现通用智能体的发展[43]
游戏AI来了,英伟达新模型看直播学会所有游戏,GPT-5.2秒杀塞尔达