AI竞赛转向推理,英伟达宣布Rubin芯片平台全面投产

产品发布与战略节奏 - 英伟达在2026年1月5日的CES上意外提前发布下一代AI芯片平台"Rubin",打破了通常在每年3月GTC大会发布新架构的传统 [1] - Rubin平台采用极端协同设计理念,整合了6颗全新芯片,包括NVIDIA Vera CPU、Rubin GPU、NVLink6交换芯片、ConnectX-9 SuperNIC、BlueField-4 DPU以及Spectrum-6以太网交换芯片 [4] - 公司高管表示,提前披露Rubin是为了尽早向生态伙伴提供工程样品,为后续部署做准备,量产爬坡计划仍按既定节奏在2026年下半年进行 [5] 性能提升与成本优势 - 相比前代Blackwell架构,Rubin加速器在AI训练性能上提升3.5倍,运行性能提升5倍,并配备拥有88个核心的新款CPU [4] - 与Blackwell平台相比,Rubin平台可将推理token成本降低最高90%,并将训练混合专家模型所需的GPU数量减少75% [4] - 同步发布了Vera Rubin NVL72机柜级系统,该系统包含72个GPU封装单元,每个封装内部包含2个Rubin Die,因此实际包含144个Rubin Die [5] 生态系统与合作伙伴 - Rubin平台已获得头部云厂商和模型公司的集中响应,首批采用名单包括AWS、Microsoft、Google、OpenAI、Anthropic、Meta、xAI、CoreWeave等 [5] - 构成Vera Rubin平台的六颗芯片已经全部到位,相关系统已在运行真实应用负载并取得积极结果 [5] 全栈AI与推理时代布局 - 公司发布了一系列AI体系产品,包括开源模型、AI存储、物理AI等,标志着AI重心从"训练规模"转向"推理系统" [6] - 发布了推理上下文存储平台,这是一个专为推理场景设计的AI原生存储平台,由BlueField-4 DPU与Spectrum-X以太网支撑,用于高效管理和共享KV Cache,减少算力浪费 [6] - 公司强调AI已从聊天机器人演变为能够理解物理世界、进行长期推理、使用工具并保有记忆的智能协作者 [6] 物理AI与机器人领域 - 围绕物理AI推进,发布了一系列开源模型、开发框架和硬件平台,将AI能力延伸至机器人、自动驾驶与工业边缘场景 [6] - 面向机器人领域,发布了Cosmos与GR00T系列开源模型,其中Cosmos Reason2是推理型视觉语言模型,GR00T N1.6是面向类人机器人的推理型视觉-语言-动作模型 [7] - 公司认为机器人领域的"ChatGPT时刻"已经到来,其完整技术栈正在赋能合作伙伴通过AI机器人重塑行业 [7] 自动驾驶领域 - 在自动驾驶领域,发布了Alpamayo开源模型家族,定位为面向"长尾场景"的推理型自动驾驶基础模型 [9] - 配套发布了AlpaSim高保真仿真框架以及覆盖1700多小时驾驶数据的开源数据集 [9] - 公司首款AV车将于2026年第一季度在美国推出,其他地区紧随其后 [9] 行业竞争格局演变 - 随着AI进入推理阶段,英伟达将AI基础设施的竞争推向"系统工程能力" [9] - 真正拉开差距的已不只是芯片算力本身,而是从架构、系统到生态的整体交付能力 [9]

Nvidia-AI竞赛转向推理,英伟达宣布Rubin芯片平台全面投产 - Reportify