AI芯片狂卷1480亿美元,但这块业务却熄火:英伟达押注制造业四年收益寥寥

核心观点 - 英伟达AI芯片业务营收在截至10月的九个月内达到近1480亿美元,远超2023年同期的275亿美元,但公司向软硬一体化平台转型的关键尝试——Omniverse软件业务遭遇重挫,商业化进程严重滞后,暴露了其开辟第二增长曲线的艰难挑战 [1][2] 业务表现与现状 - Omniverse Cloud服务因自2022年推出以来需求“几乎不存在”,已于2025年8月关闭 [1] - 公司曾斥资数亿美元从甲骨文、谷歌和微软租赁数千个GPU以支持该项目,但大部分时间因缺乏外部客户而忙于在内部寻找用途以避免芯片闲置 [1] - 尽管CEO黄仁勋在CES上仍将其描绘为数万亿美元的“物理AI”机会,但公司内部对其进展缓慢感到沮丧 [1] 产品与商业化问题 - 软件平台被开发者普遍反映“难用”、功能不完整且极易崩溃,场景创建工具操作复杂且文档陈旧 [3] - 极少有客户真正签约使用Omniverse Cloud服务器进行大规模模拟,尽管客户名单包括宝马、西门子、富士康和波士顿动力等 [3] - 在去年11月的一次活动中,有英伟达代表承认软件尚未准备好满足特定需求,并建议客户转而使用竞争对手Unity的软件 [3] - 与宝马宣布的合作伙伴关系规模远小于最初预期,尽管宣称宝马全球有超过2万名规划人员使用该软件,但未详细说明实际销售额 [4] 内部管理与战略压力 - CEO黄仁勋多次批评团队浪费工程资源在“演示”而非“产品”上,并指责团队未实现盈利 [1][4] - 黄仁勋曾因团队增加人员开发新产品的请求愤怒斥责近一小时,强调现有人员已足够 [4] - 黄仁勋长期担心竞争对手会抢占先机,极力推动公司寻找新的收入来源 [4] - 公司通过让CEO的儿女加入该部门工作,以及投资新思科技和MetAI等公司,试图整合工具并推动生态系统建设 [6] 市场竞争与行业挑战 - 该领域面临Unity Technologies和开源模拟器Gazebo等强有力的竞争对手 [6] - 许多大型企业如特斯拉更倾向于开发内部模拟软件,而非依赖英伟达的通用平台 [6] - 行业特定的技术门槛构成挑战,例如Isaac Sim工具在处理如衣物等形状不断变化的复杂物体时并不实用 [6] - 成本效益是阻碍普及的因素,有行业人士指出租赁云端服务器在成本上并不划算 [6] - Omniverse目前被描述为一个供开发者构建的横向开放平台,而非完整的应用程序,意味着从无到有创造一个市场仍需漫长的培育期 [7] 长期愿景与类比 - 公司高管将Omniverse类比为CUDA,后者经历了十多年的投资才彻底改变了深度学习领域 [6] - 公司认为Omniverse是打开“物理AI”这一巨大市场的基础软件,长期愿景正通过机器人和汽车公司的采用而获得回报 [6]