核心观点 - AI、分析师和交易员在资产配置中形成互补而非替代关系,三者分别在信息处理速度、逻辑推演深度和决策执行灵活性上具有独特优势[2][3] - 通过复盘2023年10月17日美国升级芯片出口管制案例,揭示三类主体在认知体系上的根本分野:AI依赖历史模式匹配,分析师构建因果链条,交易员关注市场情绪和博弈机会[2][4][5] - AI无法完全取代人类投研人员,因其难以处理结构性断裂、缺乏二阶思维和博弈直觉、无法理解政策语境和软信息等模糊边界[24][25][26] - 未来最有竞争力的资产配置体系是AI×分析师×交易员的协作模式,AI提升信息密度,分析师提供结构洞察,交易员给出实盘反馈[3][29] 信息摄取与反应维度 - AI以毫秒级速度抓取关键词并匹配历史模式,例如在芯片禁令事件中瞬时抓取"Export Controls"+"China"+"Nvidia"等负面高权重词组并触发自动抛售[8][9] - 人类分析师需要数小时到数天进行深度语境分析,例如阅读400页监管文件,关注"豁免了什么"和"缓冲期多久"等定性信息,判断产能将转移至北美客户[8][9] - 交易员以秒级速度实时关注盘口流动性,包括买卖盘订单流、大单成交方向和波动率变化,通过观察第一小时内杀跌动能判断市场抛压性质[8][9] - 三类主体角色定位不同:AI是市场加速器放大恐慌,分析师是基本面稳定器提供长期价值锚点,交易员是干预者捕捉错杀机会并提供流动性[9] 核心逻辑与推演框架 - AI依赖相关性陷阱进行线性外推,根据历史地缘政治危机(如2022年禁令)预测科技股将进入3-5天的"避险模式",增加空头头寸规避短期风险[13][15] - 人类分析师通过因果链重塑构建非线性推演,进行产业链调研推测英伟达将推出符合新规的"降级版"芯片(如H20),通过最坏情景测算发现当前股价PEG依然合理[13][15] - 交易员关注预期差套利,利用反身性原理观察市场拥挤度和机构资金动向,在关键整数关口(如450美元)进行日内波动套利,追求短期收益[13][15] - 三者预测依据不同:AI依赖情绪因子延续,分析师进行估值锚定与情景分析,交易员运用反身性原理捕捉情绪极端点[15] 决策输出与风险偏好 - AI决策遵循严格纪律,按风险价值(VaR)模型自动执行减仓、降杠杆等操作,优先控制尾部风险,避免极端回撤但可能错过V型反弹[20][21][22] - 人类分析师强调观点确信,在估值被情绪打穿时建议"分批买入",愿意承受短期账面亏损换取中长期估值修复,观察窗口拉长至未来几个季度[20][21][22] - 交易员追求高度机动性,盘中频繁调仓并在多空间快速切换,早盘顺势做空后跌幅放缓即逐步止盈甚至反手做多,对短期价格波动极度敏感[20][21][22] - 时间维度和盈亏特征差异明显:AI关注中短期回撤控制,分析师以1-4个季度为主,交易员以日内到数日为单位且盈亏迅速集中[22] AI的结构性短板 - AI无法处理结构性断裂,当遇到训练集未出现过的新范式时倾向于用旧经验解释新变化,例如将芯片禁令简单解读为需求受损而忽略供给受限的新格局[24] - AI缺乏二阶思维和博弈直觉,难以理解市场参与者对信息的预期反应,无法判断跌幅是否超预期或不及预期,而交易员能通过关键价位支撑推断买盘强度[25] - AI难以理解软信息和模糊边界,如政策文件中的豁免条款、过渡期安排以及管理层语气等语境信息,人类分析师能识别监管意图中的折中路径[26] 人类投研人员的比较优势 - 未来分析师需将机械性工作外包给AI,如秒级抓新闻、梳理财报数据等,自身聚焦于商业模式可持续性、估值倍数合理性等深层判断[30] - 投研角色应从信息传递者升级为观点变现者,在AI提供的信息地平线上给出结构清晰、逻辑闭环的定价趋势判断,并承担评级责任[30] - 具备跨学科整合能力的分析师更具优势,需在宏观经济、科技演进、监管逻辑间切换视角,形成从地缘格局到资产定价的完整因果链[31]
AI 赋能资产配置(二十八):AI、分析师与交易员:殊途同归与优势互补