行业趋势与格局演变 - 2023年生成式AI领域呈现"百模大战"格局,融资和刷榜是主要特征,但2024年市场迅速收敛至少数玩家的资本与技术持久战 [2] - 行业关注点从模型性能转向落地价值,核心命题转变为如何将大模型能力转化为业务生产力 [2] - Agent成为大模型落地的关键解决方案,AWS将其作为推动千行百业业务重构的核心技术 [3][4] Agent技术崛起驱动因素 - 大模型发布会普遍强调工具调用能力指标,如Kimi K2、Grok 4、Minimax M2和OpenAI最新ChatGPT Agent均聚焦多工具集成 [6] - Agentic AI爆发两大原因:Agent编排框架成熟(CrewAI/LangGraph/LlamaIndex)和标准化协议出现(MCP/A2A) [10] - LangChain调查显示超50%公司已部署Agent,80%正在研发;Gartner预测2028年33%企业软件将采用Agentic AI [10] AWS Agent解决方案架构 - Amazon Bedrock AgentCore提供七大模块降低构建门槛:Runtime(无服务器环境)、Memory(记忆系统)、Observability(可观测性)、Identity(身份管理)、Gateway(网关服务)、Browser(浏览器功能)、Code Interpreter(代码解释器) [15][16][17][18] - 解决方案支持按需组合使用,兼容主流AI框架与协议(MCP/A2A),内置企业级安全管控 [19] - 针对企业级需求推出S3 Vectors向量数据库(成本降低90%)、Amazon Nova模型定制功能、AI IDE产品Kiro(规范驱动开发/智能代理钩子) [22][25][26] 技术落地与商业化进展 - AWS Marketplace已上架上百种AI Agents & Tools,支持自然语言搜索直接部署 [11] - 当前Agent供需存在缺口,通用性Agent难以解决行业独特问题,需解决六大核心挑战:安全扩展、记忆系统、权限细化、复杂工作流工具、资源发现、交互追溯 [12] - S3 Vectors创新性实现冷热数据分层存储(低频存S3/高频存OpenSearch),支持10,000索引/数千万向量规模 [23][24] 行业变革特征 - 本轮AI浪潮区别于历史的关键在于:模型通用能力+基础设施成熟度(框架/数据库/接口/工具链)推动Agent从概念验证走向规模化落地 [29] - 技术革命本质体现为通过AWS等平台降低定制化门槛,使Agent成为各行业企业的专属解决方案 [30]
为什么2025成了Agent落地元年?