25年8月8日理想VLA体验分享(包含体验过特斯拉北美FSD的群友)
自动驾驶体验对比 - 理想VLA在园区内主副驾无人场景下表现优秀 具备基于语言指令的精准控制能力 但受限于封闭环境无法验证泛化能力 [1] - 与特斯拉FSD对比 北美用户认为FSD在自然度和拟人化驾驶方面更胜一筹 接近自动驾驶水平 而理想VLA在顺义路况下仍有明显"机器感" [1] - 公开道路测试显示 在非高峰期的顺义路况下 VLA在安心感/舒适度/效率上较L系列VLM有显著提升 但窄路和村庄场景表现欠佳 [2] 核心用户体验差异 - 红绿灯刹停过程表现出色 丝滑无顿挫感 显著优于普通驾驶者和多数竞品 形成明显代际差体验 [3] - 变道/超车等常规操作难以体现差异化 但刹车品质成为最易感知的优势项 类比"老司机"驾驶水准 [4] - 语音控车功能具备路线记忆和个性化设置能力 在L4实现前可形成独特用户体验优势 [10] 技术迭代路径 - VLA采用强化学习范式 相比VLM的监督学习具备四大迭代方向:仿真数据优化/芯片算力提升/模型参数量增长/语音工程优化 [7] - 强化学习在自动驾驶领域优势显著 奖励函数明确(安全/舒适/效率) 可针对具体场景持续优化 突破模仿学习的炼丹局限 [8][9] - 当前运行4B参数模型 未来7B/14B乃至100B参数模型将带来能力飞跃 芯片算力提升是关键支撑 [7] 产品化逻辑 - 技术团队需平衡模型能力与用户体验 互联网时代产品体验优先 AI时代需兼顾技术突破与体验优化 [10] - 自动驾驶首要目标是超越80%普通驾驶者 逐步向95%水准迈进 刹车品质成为首批达标的关键指标 [4]