Workflow
DeepSeek加速国产AI芯片的"算力突围战"

文章核心观点 - 深度求索发布V3.1版本大模型 提出UE8M0 FP8浮点数格式 专为下一代国产芯片设计 体现国产AI生态从软件到硬件的深度协同变革 [6][11][13] - UE8M0 FP8采用范围优先策略 放宽小数精度 确保数值范围稳定 适配国产芯片硬件逻辑 虽损失细节但避免计算溢出风险 [11] - FP8标准竞争本质是算力生态争夺 国产阵营需从模型到芯片协同创新 大模型厂商主动调整技术路线 与国产硬件对齐 即便暂时性能妥协 [13][14] 技术背景与行业现状 - 模型参数通常以浮点数形式存储计算 传统FP32精度高但显存占用大 FP8通过牺牲部分精度 换取显存占用减半和计算速度大幅提升 [7] - 英伟达在H100等GPU上实现FP8高效支持 通过动态缩放策略和Tensor Core指令优化 成为训练千亿级大模型标配 但这些优化深度绑定英伟达硬件 [7] - 国产GPU若直接照搬英伟达方案 面临数值不稳定和训练难以收敛等问题 [7] UE8M0 FP8技术特点 - UE8M0 FP8是范围优先变体格式 大幅放宽小数精度 优先确保数值范围稳定 适配国产芯片硬件逻辑 [11] - 设计类似于用粗糙但足够长卷尺测量 虽损失细节但避免计算溢出风险 [11] - 调整背景是国产GPU在指令集和底层架构上与英伟达存在差异 [11] 国产芯片生态进展 - 沐曦曦云C600计划2025年推出 原生支持FP8 采用多精度混合算力架构 [13] - 燧原科技L600主打训推一体 优化FP8计算效率 [13] - 合作模式成为未来趋势 模型端优化低精度计算策略适配国产芯片特性 芯片端针对主流大模型需求定制计算单元和指令集 生态端建立国产FP8标准逐步摆脱对英伟达依赖 [18] 产业意义与展望 - UE8M0 FP8背后是国产AI行业从单点突破迈向全栈协同的关键一步 [16] - 在算力被卡脖子背景下 软硬件深度绑定探索比单纯模型规模增长更具长远价值 [16] - FP8标准竞争本质是算力生态争夺 国产阵营需从模型到芯片协同创新 [13]