英伟达的战略定位与历史沿革 - 公司在1993年创立时预见到通用计算CPU的局限性与摩尔定律的终结,从而确定了加速计算的战略方向 [1] - 英伟达同时发明新技术和现代3D游戏市场,解决了鸡生蛋还是蛋生鸡的困境 [1] - 通过CUDA Everywhere策略将CUDA推广至科研界,加速了ImageNet等竞赛的突破 [1] - 基于深度学习是通用函数逼近器的洞察,公司彻底重塑计算堆栈,将AI集成到所有芯片、系统和软件中 [1] 全栈协同设计的技术优势 - 2016年推出首台AI工厂DGX-1,其核心秘诀在于全栈协同设计:同时设计和集成整个基础设施(网络、CPU、GPU)并运行统一软件栈 [2] - 这种高度集成突破摩尔定律限制,实现代际间约10倍的性能飞跃 [2] - 公司是当今世界上唯一能提供从建筑、电力到白纸的完整AI工厂解决方案的企业,所有网络、交换机、CPU、GPU都运行英伟达统一软件栈 [32] - 全栈设计使产品保持软件兼容,能以物理极限速度创新,每年带来约10倍的性能提升 [33] AI工厂的商业价值与市场规模 - AI已在超大规模数据中心实现数千亿美元的实际ROI,如搜索、推荐系统等 [3] - AI工厂为客户提供极高能效,1千兆瓦的人工智能工厂GPU价值约500亿美元 [31] - 公司预测AI将开创两个万亿级新市场:数字劳动力(Agentic AI)和物理AI(机器人技术) [3][4] - AI工厂市场需求正处于数万亿美元的爆发初期,当前仅建造了几千亿美元基础设施 [66] 未来计算范式与增长前沿 - 未来计算的本质是100%生成式,一切内容都将被实时智能生成 [5] - 数字劳动力将创造AI软件工程师、AI律师等数字人,企业劳动力将是人类和数字人的结合 [47][48] - 物理AI将实现通用AI驱动的多具身机器人,包括自动驾驶、人形机器人等 [4][50] - 支持机器人需要训练、模拟、运行三类计算机,Omniverse虚拟世界被严重低估但至关重要 [54][73] 行业应用与投资回报 - 推荐系统是世界上最大的软件生态系统,正迅速转向AI,将需要大量GPU [40] - Meta通过英伟达GPU驱动的AI恢复归因能力,挽回数千亿美元市值 [39] - 超大规模数据中心行业从经典机器学习转向深度学习的转型价值数千亿美元 [36] - 公司为量子计算推出CUDA-Q架构,可将量子计算进程提前约十年 [57] 技术创新与生态建设 - cuDNN库是有史以来最重要的库之一,与SQL同等重要,公司拥有约350个这样的库 [72] - 每单位能源的吞吐量决定客户收入,成为未来AI工厂的关键绩效指标 [70] - 公司通过统一软件栈实现极快的创新速度,同时提供最高性能和最大规模 [33] - Omniverse虚拟世界使AI能在进入现实世界前进行数万亿次迭代,simulation-to-real差距极小 [54]
黄仁勋亲述“英伟达创业史”:1993年的洞见,2012年的突破,未来的AI