Workflow
当美国AI基建大跃进引发泡沫讨论,中国创业者该如何看?
英伟达英伟达(US:NVDA) 锦秋集·2025-10-15 23:58

AI基建投资热潮 - AI、资本、能源与地理以前所未有的方式被重新绑定,引发美国股市狂欢与增长[1][2] - 市场出现类似2000年光纤时代的特征:股价暴涨、土地升温、电力短缺,分析师开始讨论AI基建是否成为新泡沫[2] - 全球AI基建热潮可能代表AI"工业化"的起点,但也意味着不可预知的风险,中国早期AI创业者应冷静看清周期[5] 主要合作与投资动态 - OpenAI与NVIDIA计划部署10千兆瓦级系统,NVIDIA可能向OpenAI投资高达1000亿美元[8] - OpenAI联手Oracle、软银在全球新增五个AI数据中心,价值5000亿美元、容量10千兆瓦[8] - OpenAI"Stargate"计划吸引三星与SK集团加入,两家公司提供高带宽内存及半导体技术支持[8] - OpenAI与AMD达成战略合作部署6吉瓦算力规模GPU,AMD出让10%股权,协议价值超600亿美元[8][17] - OpenAI与博通合作部署10吉瓦规模自研AI加速器,博通承担芯片制造与封装工作[8] - OpenAI发布新五年规划,试图兑现累计1万亿美元投资承诺[8] - 贝莱德、Nvidia、xAI和微软组成的财团以400亿美元收购德克萨斯州Aligned数据中心[8] - CoreWeave和Poolside计划在德州建立500英亩天然气动力数据中心,Poolside以140亿美元估值融资20亿美元[8] - 英国云提供商Nscale与微软签署140亿美元协议,在德州部署10.4万块Nvidia GB300芯片,在葡萄牙部署12,600个GPU[8] 行业风险分析框架 - 最高风险集中在"全力押注者"(第一象限),尤其是CoreWeave和xAI SPV债务工具,这些实体90%-100%依赖AI行业繁荣,若市场波动可能在12-24个月内面临重大倒闭风险[15] - OpenAI存在"被迫重组"可能性,但凭借"大而不倒"地位仍能获得持续资金支持[15] - 微软、亚马逊等超大规模科技企业处于"堡垒阵营",对AI企业投资相较于自身现金流规模较小,且投资往往以云服务收入形式回流(循环融资)[15] - NVIDIA虽财务属"堡垒阵营",但存在系统性风险,被归为"发牌者",收入高度依赖AI行业繁荣,对客户1000亿美元股权投资意味着若客户倒闭将同时面临收入损失和股权缩水[15] - AMD等企业进行"生死押注",虽目前属投资级,但一次重大AI业务失败(如MI450芯片项目失利)就可能使信用评级从投资级降至垃圾级[15] 关键交易分析 - AMD为获得OpenAI的GPU采购承诺出让10%股权,这是CEO Lisa Su的重大冒险,因过去2.5年NVIDIA几乎占据AI数据中心增量收入的100%[22] - 预计今年NVIDIA营收将是AMD的10倍(NVIDIA 2100-2300亿美元 vs AMD 330亿美元)[22] - NVIDIA成功得益于整合软件、网络和代码设计的生态系统,现在算力单位已是整个数据中心而非单一芯片[22] - 若MI450芯片性能达标,AMD仅从OpenAI就可能获得1500亿美元增量收入,但该芯片能否与NVIDIA竞争"远未可知"[22] - AMD股价大幅上涨意味着OpenAI可能"近乎免费"获得大量GPU[22] - 每瓦性能是关键竞争因素,即便竞争对手芯片定价为零,超大规模企业仍会选择NVIDIA,因电力是当前稀缺资源[22] 市场需求与规模争议 - 算力需求未来将"极为庞大",未发明的新应用将推动需求增长,类似早期互联网基础设施催生社交网络和视频服务[22] - 杰文斯悖论适用:随着每token成本下降,AI将在更多效率低下场景中得到应用,进一步推高需求[22] - 与互联网泡沫时期光纤闲置不同,"如今全球不存在闲置的GPU",表明当前GPU供应能被需求即时消化[22] - 每个吉瓦规模数据中心需要约500亿美元投资(包括芯片、土地、电力和建筑设施)[30] - OpenAI、Elon Musk旗下企业正计划将数据中心规模扩大至10吉瓦,意味着单个数据中心投资规模可能达5000亿美元[30] - 若资本支出达数万亿美元,在硬件使用寿命(约20年)内,运营支出可能高达"数十万亿美元"[30] 供应链与能源制约 - 制约AI行业增长的不是制造下一代芯片的能力,而是能源投入和原材料投入[23] - 掌控关键供应链要素(如电力和特定组件)的企业将崛起并占据主导地位[23] - OpenAI与存储芯片制造商达成协议锁定了高带宽内存未来产能,使得Sam Altman能够"分配产能配额"并借此获得"收益分成"[23] - 对"电力"的掌控使供应商摆脱线性、低利润角色,开始要求获得AI企业股权增值收益[30] 循环交易争议 - "循环交易"指供应商向买方提供信贷或进行股权投资,买方再利用这些资金购买该供应商硬件的财务安排[25] - 此类交易在许多其他行业中是"标准操作且被广泛接受",如汽车OEM向经销商提供"库存贷款"[31] - 从合规角度(符合GAAP、证券法)来看,这些企业的操作是"合规的",有专业顾问团队且必须遵守Sarbanes-Oxley法案[31] - 核心担忧是英伟达实际上在向买方提供信贷支持,关键问题在于交易是否具有"经济实质"[27][31] - 与英伟达2025-2027年将产生的4500亿美元现金流相比,其当前对各企业的投资"微不足道",这些"小额股权投资"为行业生态系统提供润滑[31] - 相互关联的投资很常见,只要"产品存在终端需求"就具备合理性,AI行业并不缺乏需求[31] 财务可持续性质疑 - OpenAI预计2025年营收127亿美元,但若保持当前支出比例将产生286亿美元成本,净亏损约159亿美元[100] - OpenAI估值5000亿美元对应39.4倍营收倍数,而微软为12.7倍,谷歌为6.2倍[101] - OpenAI需实现394亿美元年营收才能以微软倍数验证5000亿美元估值合理性,当前存在267亿美元营收差距[101] - OpenAI预计要到2029年才能实现现金流为正,2025-2029年现金消耗累计估计为1150亿美元[105] - 要实现1250亿美元营收目标,需要5.21亿付费用户(按每月20美元计算),而当前ChatGPT付费用户仅1000万-1500万[104][106] - OpenAI毛利率为-125%,而传统SaaS企业毛利率为70%-80%[108][110] - 2025年上半年美国GDP增长的96%来自AI相关资本支出,若支出停止经济增长将接近衰退水平[122] - 无新增融资情况下,OpenAI现金仅能维持约12个月,需在2026年前筹集300亿-500亿美元才能维持运营[126]