EUV光刻机“秘史”!

文章核心观点 - 极紫外光刻技术是延续摩尔定律的关键,其商业化成功由荷兰ASML公司实现,但基础研究主要由美国机构完成,凸显了技术研发与商业化成功之间的差异 [1][22][23] 半导体光刻技术原理与演进 - 光刻技术利用掩模将光选择性投射到硅片,通过光刻胶硬化软化、蚀刻等步骤构建集成电路,过程重复数十次 [2] - 早期光刻使用436纳米汞灯光源,衍射现象成为限制特征尺寸缩小的关键因素 [2] - 晶体管尺寸从20世纪70年代初约10000纳米缩小至如今约20-60纳米,依赖光刻技术进步 [1] - 光学光刻通过浸没式技术、相移掩模等多重创新突破预期极限,推迟被替代时间 [6] 替代光刻技术的探索与局限 - 电子束光刻无需掩模可实现更小特征尺寸,但速度比光学光刻慢三个数量级,曝光300毫米晶圆需数十小时,仅用于原型制作 [4] - X射线光刻波长仅10纳米至0.01纳米,但需同步加速器作为光源,IBM投入超10亿美元,最终未取代光学光刻 [5][6] - 电子束和X射线光刻未能规模化因光学光刻持续创新,如透镜设计进步和更短波长光应用 [6][8] 极紫外光刻技术的诞生与发展 - 日本NTT研究员木下博夫因X射线光刻困难转向软X射线研究,1985年首次通过多层镜反射投射图像,波长约2-20纳米 [9][11] - 多层镜由不同材料交替层构成,通过相长干涉反射X射线,斯坦福大学等机构研发钼硅镜反射13纳米光 [10][11] - 早期业界对反射式X射线光刻持怀疑态度,NTT、贝尔实验室等坚持研究,1989年会议被视为EUV技术曙光 [12][13] - 技术更名为极紫外光刻以区别于深紫外光刻,避免与声誉不佳的X射线近场光刻混淆 [15] EUV技术研发与联盟形成 - 美国国防高级研究计划局和国家实验室主导EUV研究,1994年成立国家极紫外光刻计划 [16] - 1996年国会终止能源部资助后,英特尔投入2.5亿美元组建EUV-LLC联盟,联合摩托罗拉、AMD等公司,英特尔占95%股份 [18] - EUV-LLC实现所有技术目标,申请超150项专利,但ASML因中立地位获技术授权,尼康和佳能被排除在外 [19][20][22] - ASML与卡尔蔡司合作成为唯一成功开发EUV技术的公司,收购美国硅谷集团,另一授权商Ultratech Stepper放弃技术 [20] EUV商业化与市场格局 - ASML于2006年交付首台EUV原型机,但电源性能弱,美国Cymer公司研发激光等离子体电源后被ASML收购 [22] - 台积电、三星、英特尔于2012年分别向ASML投资10亿、10亿、40亿美元换取股份,推动EUV量产 [23] - ASML于2013年交付首台量产型EUV设备,台积电、英特尔、三星均采用其设备生产 [23] - 美国机构如DARPA、贝尔实验室、国家实验室贡献基础研究,但光刻设备市场由日本和欧洲公司主导,ASML占据EUV商业化最终阶段 [1][22][23]