公司文化与战略 - 公司创始人及CEO黄仁勋保持着强烈的危机感,其经营哲学是公司“距离倒闭还有30天”,并将此心态持续了33年,认为对失败的恐惧是比贪婪更强的驱动力 [1][5] - 公司历史上多次濒临破产,包括1995年的技术路线错误,依靠世嘉500万美元投资和台积电的信任才得以生存,这些经历塑造了其对风险和战略的独特理解 [3] - 公司坚持长期主义与持续迭代,例如2005年推出CUDA时股价暴跌80%,但坚持投入最终成为AI革命的基础设施,认为真正的竞争力在于持续迭代能力,而非一次性突破 [2] - 公司在技术决策上敢于豪赌,例如在芯片流片环节采用直接投产的策略,尽管此前无人成功 [5] AI行业发展与竞争格局 - AI技术竞赛是持续且渐进的,不存在明确的“终点线”或一方突然获得压倒性优势的局面,所有参与者都将站在AI的肩膀上共同进化 [2] - 技术进步的大部分算力被用于提升AI的安全性与可靠性,例如让AI更谨慎地思考、检验答案,而非用于危险用途,过去10年AI算力提升了10万倍 [2] - 能源增长是AI及芯片制造业发展的关键瓶颈,公司认为如果没有促进经济增长的能源政策,就无法建设AI工厂、芯片工厂和超级计算机工厂 [5][20] - 摩尔定律及其迭代意味着计算任务所需能量持续减少,这是技术普及的基础,而公司发明的加速计算在过去10年将计算性能提高了10万倍 [110][111] AI技术对社会与就业的影响 - 判断AI是否会取代某项工作的关键在于区分“任务”和“目的”,AI会消灭那些把手段当成目的的工作,而作为实现更高目的手段的工作则会升级 [3] - 以放射科医生为例,AI虽然横扫了放射学领域,但放射科医生的数量反而增加,因为其核心目的是诊断疾病,而看影像只是辅助任务 [3][4][92][93] - AI有望缩小技术鸿沟,因为它是世界上最容易使用的应用程序,例如ChatGPT用户数量几乎一夜之间增长到近十亿,且能用任何语言交互 [105][106] - 未来世界上越来越多的知识将由AI产生,可能两三年后,世界上90%的知识都由AI合成,但这与学习人类编写的知识在本质上区别不大 [81][83] 英伟达的技术与业务里程碑 - 公司发明的CUDA并行计算架构和加速计算方式是AI革命的基础,其GPU最初用于计算机图形学和游戏,后来成为深度学习的关键硬件 [122][111] - 2012年,多伦多大学实验室利用英伟达的两块GTX 580显卡(SLI配置)训练AlexNet模型,取得了计算机视觉领域的突破性进展,这被视为现代AI的“大爆炸”时刻 [120][121][129][131] - 2016年,公司制造了第一台DGX1超级计算机,成本达数十亿美元,售价30万美元,最初仅OpenAI(当时为非营利机构)的埃隆·马斯克成为其第一个客户 [135][136][137] - 公司的技术演进迅速,2016年的DGX1运算能力为1 petaflop,而九年后同等运算能力的DGX Spark设备尺寸已大幅缩小 [138][139] AI安全与伦理观点 - AI的发展是渐进的,威胁并非凭空出现,其安全性可类比网络安全,防御技术与攻击技术协同进化,且整个社区在协同合作共享信息 [46][50][56] - AI获得意识的可能性极低,关键在于意识的定义涉及自我存在认知和“体验”,而当前AI的定义是拥有知识、智能及执行任务的能力,而非人工意识 [68][70][79] - 军事领域应用AI进行国防是必要且值得肯定的,避免冲突的最佳方法是拥有过剩的军事力量,这能促使各方坐下来谈判 [37][43][44] - 量子计算机可能使现有加密过时,但行业正在致力于后量子加密技术,历史表明防御手段总会随之发展 [53][55]
黄仁勋万字访谈:33年来每天都觉得公司要倒闭,AI竞赛无“终点线”,技术迭代才是关键