文章核心观点 - 文章通过总结Dwarkesh Podcast中多位AI行业领袖的深度访谈,揭示了当前AI技术发展范式的关键转变、未来AGI的形态构想以及行业竞争格局的演变趋势[2] Ilya Sutskever的观点 - 认为无脑堆算力的“暴力美学”时代已经翻篇,预训练开始式微,数据快用光了,后续发展更依赖研究直觉,回到了需要“拼品味、拼直觉”的手搓时代[5] - 提出“情绪”是进化赋予人类的精准价值函数,让AI拥有“情绪”或“直觉”是通往真正智能的必经之路[6] - 认为真正的AGI更像一个“15岁的天才少年”,学习能力极强,并且未来智能体可以“合并智能”,瞬间获得海量经验[7] Satya Nadella的观点 - 提出模型厂商可能遭遇“赢家诅咒”,模型作为可替换的计算部件非常脆弱,而掌握“场景权”和用户数据流更为关键,微软通过将AI深度集成到Office和GitHub等应用来巩固优势[10] - 指出GitHub的未来定位是“AI智能体的总部”,通过控制代码仓库来管理由不同AI生成的代码,从而掌握AI时代的管理权[11] - 预测SaaS模式将终结,未来将转向为AI Agent提供“数字实体”、身份认证、安全环境和云端电脑等基础设施,并按AI“员工”数量或资源消耗收费[12][13] Andrej Karpathy的观点 - 认为当前大型语言模型是通过预训练模仿互联网数据产生的“幽灵”,拥有知识但缺乏肉体直觉和常识,并非像动物一样进化而来[16] - 批评强化学习效率极低,其奖励信号如同“透过吸管吸取监督信号”,无法对模型复杂的推理步骤提供精细反馈,导致幻觉和逻辑问题[17] - 提出未来AGI的“认知核心”可能只需10亿参数,主张将记忆与认知剥离,知识应存储于外部而非全部记在模型内部[18] 图灵奖得主Sutton的观点 - 指出当前LLM只是在模仿人类语言,缺乏对“客观真相”的追求,没有目标的系统只能称为“行为系统”而非“智能系统”[21] - 强调生物界不存在监督学习,未来的AI应像野兽一样从“体验流”中通过尝试-反馈来学习,而非依赖人类标注的数据[21] - 将AI的诞生视为宇宙从“复制时代”进入“设计时代”的第四道门槛,是人类首次创造出原理可知、可被随意修改的智能体,是宇宙级的质变[22] Sergey Levine的观点 - 认为机器人不需要全知全能的世界模型,只需具备为完成具体任务而生的“隧道视野”,强大的目标感本身就是感知过滤器[25] - 提出在物理世界中,“失忆”或“在当下”的不费脑子的快速反应是高级智能的表现,未来机器人架构可能是“健忘”的小脑配合“博学”的大脑[26] - 指出2009年自动驾驶失败的原因是车辆缺乏常识,而当前机器人浪潮的变量在于通过视觉语言模型获得了先验知识,使其能零样本处理边缘情况[27]
AI大家说 | 重磅嘉宾齐聚,近期Dwarkesh Podcast都聊了些什么?