微软Maia AI加速器战略背景 - 微软是OpenAI模型的最大用户及构建GPT模型的最大计算合作伙伴,这为其打造更强大的Maia AI加速器提供了双重动力[2] - 大型云服务商及主要GenAI模型开发商(如OpenAI、Anthropic、Meta)均在开发定制AI XPU,以降低生成式AI推理的单代币成本[2] - 人工智能推理预计所需计算能力将比训练高出一个数量级,为超过一百家人工智能计算引擎初创公司创造了市场机会[2] 云服务商自研芯片的行业逻辑 - 微软等云服务商希望掌控自身硬件资源,同时保留通用x86 CPU及英伟达/AMD GPU以满足客户租用需求[3] - 云服务商通过自研计算引擎并以低于第三方产品的价格竞争,旨在减少对传统芯片供应商的依赖[3] - 类似逻辑也适用于亚马逊AWS、谷歌、百度、阿里巴巴、腾讯等自行设计CPU和XPU的公司[3] - Meta Platforms虽非严格意义上的基础设施云,但通过出租硬件运行Llama模型API,正成为面向主权国家的GenAI平台云[3] Maia 100 (Athena) 芯片设计与性能 - 芯片发布于2023年11月,设计初衷是支持AI训练和推理,并专门用于运行OpenAI的GPT模型[4] - 芯片采用台积电5纳米工艺,面积820平方毫米,晶体管数量1050亿个[12] - 计算引擎包含64个核心(推测良率下有效核心数可能为52-56个),运行频率约2.86 GHz[12] - 芯片上L1/L2缓存总容量约500MB,SRAM带宽估计为132 TB/秒[12] - 配备4组HBM2E内存,总容量64GB,带宽1.8 TB/秒[12] - 每个核心的张量单元支持微软特有的MX6(6位)和MX9(9位)数据格式[13] - 互连I/O带宽为12个400 Gb/s端口,总计4,800 Gb/s(600 GB/s)[14] - 网络设计支持构建包含576个节点、总计2304个计算引擎的集群域[19] - 芯片峰值热设计功耗(TDP)为700瓦,持续功耗为500瓦[20] Maia 200 (Braga) 芯片的升级与改进 - 芯片于2026年1月发布,专门针对AI推理任务,简化了设计[5] - 采用台积电N3P(3纳米高性能版)工艺,面积836平方毫米,晶体管数量1440亿个[21] - 核心数量增至96个,良率约92%,主流产品预计有88个可用核心[20][22] - 运行频率提升至3.10 GHz[20] - L1/L2缓存SRAM容量降至272MB,SRAM带宽降至80 TB/秒[20] - HBM内存升级为6组HBM3E,总容量216GB,带宽大幅提升至7 TB/秒[20][22] - 后端网络带宽提升至56个400 Gb/s端口,总计22.4 Tb/s(2.8 TB/s)[20][21] - 主机互连升级为PCI-Express 5.0 x16,带宽64 GB/秒[20] - 集群相干域规模扩大,支持最多1536个节点和6144个计算引擎[19][20] - 性能方面,FP4精度达10.15 petaflops,FP8精度达5.07 petaflops,BF16精度达1.27 petaflops[20][24] - 持续热设计功耗(TDP)为750瓦[20] - 张量单元仅支持FP4和FP8格式,向量单元支持BF16和FP32,不再支持Maia 100特有的MX6/MX9格式[13] Maia 200的部署与应用 - 首批Maia 200机架已部署在美国中部的Azure云区域(爱荷华州得梅因),美国西部3区域(亚利桑那州凤凰城)也将跟进[26] - 微软将使用Maia 200计算引擎为OpenAI GPT-5.2大型语言模型提供推理服务,驱动Microsoft Foundry AI平台及Office 365 Copilot[26] - 微软的AI研究人员还将使用Maia 200生成合成数据,用于训练内部模型[26] - 目前尚未有关于Azure何时会提供基于Maia 200的虚拟机实例供租用的消息[26]
微软这颗芯片,撼动英伟达?