文章核心观点 - AI领域竞争格局快速演化,市场共识频繁翻转,行业正进行系统性复盘 [2] - AI并非零和博弈,OpenAI与Anthropic仍有巨大赢面,Google的崛起共同做大市场 [2][12] - Continual Learning成为AI实验室押注的新范式共识,预计2026年将看到明确信号 [2][15] - AGI竞赛类似自动驾驶,全面实现L4难度大,但在知识工作等垂直领域已实现可观的效率提升和经济价值 [2] - “NVIDIA + OpenAI”主线短期内可能被市场低估,投资OpenAI是在下注AI时代的“前所未见之物” [2][30] - 理想的AGI投资组合应包含Google、Nvidia、OpenAI、Anthropic、ByteDance和TSMC [2][32] - 模型即产品,数据即模型,阶跃式产品体验提升依赖于底层模型换代,而模型能力提升的核心在于数据投入 [2][36][37] 当前竞争格局 - 全球AI模型头部格局已定,OpenAI、Anthropic和Google构成第一梯队,技术领先与品牌效应形成高溢价 [6] - AI实验室呈现“交替领先”与“分化”的竞争常态 [4] - 技术路线出现分化:OpenAI坚定押注To C市场,ChatGPT DAU接近4.8-5亿,是Gemini(约9000万DAU)的5.6倍;Anthropic专注于To B、Coding/Agent等专业领域;Google将多模态能力置于战略首位 [7][8] - 算力领域形成GPU与TPU两大对垒阵营:Google构建了类似Apple的端到端生态,而NVIDIA则支撑起庞大的Android式生态联盟 [10] 重要技术趋势 - Continual Learning是下一个范式级技术,旨在让模型从“静态冻结”转向“鲜活”,在推理中实时学习 [15][16] - 该范式是解决机器人、世界模型等多模态问题的关键,否则相关领域可能需走10年弯路 [15][17] - 其目标是实现“样本效率”,让AI具备“超级学习力”,但成熟需基础设施支持并解决5-10个学术难题,预计2026年能看到明确信号 [19] - 当前已有早期信号,如Google Research的Nested Learning和Cursor的Online RL雏形 [19][20] - OpenAI、SSI和Thinking Machines Lab在该领域投入领先 [20] 商业模式与效率挑战 - 市场对AI泡沫的担忧部分源于OpenAI提出的1.4万亿美元财务承诺,但其中约三分之二包含“有条件解锁”条款,相对容易撤销或展期 [24][25] - 在现有可见商业模式下,OpenAI未来收入规模预计仅在2000-3000亿美元之间,仅能勉强抵消资本开支折旧 [25] - To C市场:假设拥有40亿周活用户且订阅率达10%,年收入约800亿美元;在电商与广告领域,收入上限约在400亿至1000亿美元 [27] - To B市场:即使5000亿美元的SaaS市场全部被AI重构且收取20%“过路费”,收入上限也仅为1000亿美元 [27] - 真正的增长想象力在于创造增量GDP,例如Agent若能创造20%程序员或白领的价值,对应市场增量分别为3000亿美元和3.5万亿美元 [27] - 实现此目标需依赖Continual Learning的突破,解决模型可靠性和端到端能力 [28] - 目前AI投资更被视为一种“国防”开支,巨头为免被颠覆将持续投入 [30] 产品与模型发展 - “模型即产品”:阶跃式产品体验提升源于底层模型换代,例如Sora、Veo的视频生成能力进步及Nano Banana Pro的图文解读能力 [36] - 头部实验室的模型分化取决于其战略选择和服务对象 [36] - “数据即模型”:模型进步依赖对人类“未留痕数据”的蒸馏,Pre-training数据如石油即将枯竭,RL专家数据如新能源成本高,Continual Learning如核聚变潜力巨大 [37] - 2026年是多模态大年,技术路径向“Omni-in, Omni-out”收敛,视觉、音频和文本被统一Token化 [38] - 多模态进步直接利好机器人学习和多模态Agent [38] 机器人领域进展 - 机器人领域的“GPT时刻”可能还需3-5年,且从一开始就呈现分化态势,因缺乏统一的Pre-training基础和硬件标准 [43][44] - 2025年Q4湾区AI机器人公司集中发布,如Google DeepMind及其衍生公司Physical Intelligence、Generalist等 [44] - 这些公司强调真实世界数据、专注于上半身精细操作,并致力于打造泛化的机器人大脑 [44] - 数据是机器人领域最重要的投入,各家公司采用截然不同的数据配方:Generalist收集了27万小时真实机器人交互数据;Sunday通过“手套+众包”收集了1000万条家庭数据;Physical Intelligence在Airbnb真实环境中持续收集数据 [46][47] - RL在机器人领域作用显著,例如Pi的RECAP策略能让机器人实现连续10小时稳定执行长周期任务 [47] - 机器人商业化落地开始探索,如Dyna为B2B商家提供服务,同时硬件的重要性被重新评估 [48] Agent与语音交互演进 - Proactive Agent是模型公司主赛场,需具备意图识别、Always-on和长期记忆三大核心能力,与Continual Learning范式紧密相连 [50] - 它能构建更高维度的护城河,实现真正的个性化,OpenAI等公司已在此方向布局 [50][51] - Voice Agent过去12个月飞速发展,2025年底可能是市场结构性拐点,技术架构正从三段式转向端到端的Real-time Speech-to-Speech [53] - ElevenLabs凭借早期建立的数据规模与质量优势构建了护城河,并具备类似操作系统层级的防御性 [55] - Voice Agent的成功逻辑偏向垂直领域,需深度嵌入行业数据闭环与核心工作流 [56] - Infra层公司如Retell和Vapi的本质是将电话线托管成一套“语音操作系统”,Retell的ARR已接近4000万美元 [57][58] 市场竞争与用户洞察 - Gemini 3发布后,ChatGPT首次因模型竞争出现流量和用户下跌,但ChatGPT在用户粘性上保持优势 [62] - 流量争夺:Gemini的MAU已达ChatGPT的20%-25%,但Gemini的DAU/MAU仅约10%,远低于ChatGPT的约25% [63] - 地域差异:ChatGPT守住美、英、德等高价值市场;Gemini采取“农村包围城市”策略,在印度、巴西等新兴市场渗透率高,MAU达ChatGPT的1/3以上 [63][64] - 用户行为:ChatGPT正确立“Personal Assistant”心智,非生产力类查询比例上升,移动端活跃度高;Gemini更多被视为生产力工具 [66] - 入口之争:AI Chatbot已成为重要信息检索入口,Google Search与ChatGPT的流量比例已从95:5演变为85:15 [68] 投资视角与市场叙事 - AI Beta仍是科技创新主旋律,市场叙事已从“AI Bubble”转向“AI War”,后者即是对前者的否定 [69] - 当前“泡沫”本质是OpenAI承诺的泡沫,二级市场估值并未出现明显泡沫 [70][71] - 投资需坚守AI Beta并对新物种保持敏感,新物种涌现将带来更大Alpha机会 [72] - 硬件层面,GPU与TPU阵营势均力敌,应同时持有但可向暂时落后方倾斜 [73][74] - NVIDIA在产品路线图和商业模式上具备优势,是更纯粹的“军火商” [74] - 智能应用层,OpenAI已重新将资源集中到Pre-training,并在Agent布局上更充分 [75][76] - 若Gemini优势扩大,可能推动NVIDIA与OpenAI形成更紧密的“反Google同盟” [77][79] 潜在投资机会 - 投资应聚焦于技术成长最陡峭的领域:全球领先的模型公司、其所需的算力与硅基基础设施、以及技术溢出的红利 [32] - Proactive Agent处于早期萌芽阶段,2026年可能接近真正落地时刻 [79] - 应用新分发形态:Intuit作为OpenAI APP SDK的First Mover,已投入1亿美元,可能成为标杆案例 [81] - Agentic Commerce:Shopify作为电商后台基础设施,无论哪家模型胜出都可能受益 [81] - 企业定制化:Snowflake & MongoDB等Data Infra公司受益于企业大规模自建Agent的趋势 [82] - 新码农:JFrog可能受益于Coding Agent导致的代码构建物数量增长 [82] - 新客服:Twilio作为按量计价的通信基础设施,可能受益于Voice Agent使用量爆发 [83]
How To Play AI Beta:拾象 2026 AGI 投资思考开源