可解释性与安全

搜索文档
中科院自动化所最新综述!VLA模型后训练与类人运动学习的共性
具身智能之心· 2025-06-29 17:51
核心观点 - 文章从人类运动技能学习角度系统总结了VLA模型的后训练策略,提出环境、具身、任务三维分类框架,并探讨神经科学对机器人学习的启发[4][5][6] - VLA模型需通过后训练从通用预训练转向特定任务适配,类似人类从遗传能力到专项技能的转化过程[8][9] - 类脑视角下,后训练技术可划分为环境感知增强、具身认知优化、任务理解深化及多组件集成四大方向[10][12] VLA模型与后训练重要性 - VLA模型整合视觉、语言与动作生成模块,实现"看-听-动"闭环,但预训练模型在真实场景中需后训练提升精度与鲁棒性[8] - 后训练利用少量目标场景数据微调模型,使其适应机器人物理特性与任务需求,解决"开箱即用"性能不足的问题[9] 三维后训练策略 环境维度 - 引入可供性线索强化模型对环境交互可能性的理解,如物体功能暗示(门把手提示抓握)[12] - 优化视觉编码器与多模态感知融合,提升环境细节记忆与抗遗忘能力[12][13] 具身维度 - 建立机器人正向/逆向运动学模型,模拟人类前馈-反馈控制机制实现精准动作规划[14] - 借鉴小脑多内部模型协同机制,设计分层动作控制模块[14] 任务维度 - 通过人类示范数据注入专家知识,加速任务理解[14] - 采用层次化策略分解长程任务为可管理子步骤,对应人类分而治之的神经处理模式[14][17] 技术挑战与趋势 - 数据效率:需开发课程学习、主动采样等类人策略降低训练数据需求[22] - 多模态扩展:触觉/深度传感等新模态输入可提升环境交互真实性,但面临传感器融合难题[22] - 持续学习:当前离线微调易导致遗忘,需借鉴人类记忆机制开发终身学习框架[22] - 开放泛化:从实验室性能优化转向未知环境适应能力建设[22]