Workflow
同行评审制度
icon
搜索文档
被拒≠失败!这些高影响力论文都被顶会拒收过
机器之心· 2025-12-11 10:47
Waymo的AI战略与知识蒸馏 - Waymo近期发布深度博客,详细阐述了其以Waymo基础模型为核心的AI战略[1] - 谷歌首席科学家Jeff Dean在社交媒体上重点介绍了Waymo使用的知识蒸馏方法,该方法借鉴了创建Gemini Flash模型的经验,旨在基于更大模型创建可机载运行的高计算效率模型[1] - 知识蒸馏技术由Geoffrey Hinton、Oriol Vinyals和Jeff Dean在2014年提出,其论文虽被NeurIPS 2014以“不太可能产生重大影响”为由拒稿,但如今已成为模型压缩和大模型落地的标配方法,论文引用量超过28,000次[3][4][29] 被顶级会议拒稿但影响深远的AI技术 - **LSTM**:由Sepp Hochreiter和Jürgen Schmidhuber提出,在1996年被NIPS拒稿,拒稿理由包括参数过多、过于复杂且缺乏生物学合理性,如今引用量达139,707次,并在2010年代后于语音识别和机器翻译中展现出统治级表现[8][13] - **SIFT算法**:由David Lowe提出,在1997年和1998年先后被ICCV和CVPR拒稿,理由是被认为“过于繁琐”、“不够优雅”,最终以Poster形式发表,曾统治计算机视觉领域长达15年,如今引用量达27,389次[11][14] - **Dropout**:由Geoffrey Hinton团队提出,在2012年投稿NIPS时被拒,评审认为其核心思想过于激进且缺乏数理逻辑,但该技术迅速成为AlexNet夺冠ImageNet的关键,如今引用量达60,231次[17] - **Word2Vec**:由Tomas Mikolov等人提出,在首届ICLR会议上收到“Strong Reject”评价,评审认为其“比较不科学”、“定义模糊”,但通过开源代码迅速成为NLP领域基石,并于2023年获NeurIPS“时间检验奖”,如今引用量达50,855次[19][20] - **YOLO**:由Joseph Redmon等人提出,在2015年被ICCV拒稿,评审因其定位精度不如R-CNN系列而拒绝,但忽视了其实现45 FPS实时检测的速度优势,如今YOLO系列已迭代至v13,成为工业界最受欢迎的检测框架,引用量达69,782次[27][28][30] - **RoBERTa**:由Meta AI研究人员提出,在投稿ICLR 2020时被拒,评审认为其新颖性和技术贡献有限,只是“仔细调参”和“使用更多数据”,但该模型超越了原始BERT,成为后续NLP研究的标准基线,如今引用量达23,479次[32] - **Mamba**:由Albert Gu和Tri Dao提出,在ICLR 2024评审中折戟,评审理由包括与其前作S4相比增量不足、未全面超越Transformer等,但该架构在社区引发热烈讨论,基于其的变体大量涌现,成为2024年最具影响力的架构创新之一,如今引用量达6,799次[35][36][37] 科研评价体系的局限与反思 - 顶会评审系统在面对颠覆性创新时存在系统性认知滞后,表现为“简单性陷阱”,即倾向于将数学复杂性等同于研究贡献,从而质疑如Dropout或Word2Vec等简单有效的方法[40] - 评审作为旧范式的维护者,存在“范式惯性”,当YOLO或Deep Image Prior等新思想出现时,旧范式的标准会成为阻碍新思想的壁垒[40] - 在深度学习领域,过度要求理论证明的“严谨性的暴政”可能会扼杀具有巨大实用价值的工程突破,例如Adam优化器初期面临的收敛性质疑[40] - 同行评审虽然是科学共同体的基石,但难以摆脱人类认知的局限性,它善于识别错误,却往往拙于鉴别天才,真正决定研究生命力的是其是否解决问题以及在时间长河中的回响[41][45]