Workflow
智能体构建
icon
搜索文档
LangChain 彻底重写:从开源副业到独角兽,一次“核心迁移”干到 12.5 亿估值
AI前线· 2025-10-25 13:32
LangChain 1.0 版本重写概述 - LangChain 宣布完成1.25亿美元融资,投后估值达12.5亿美元,成为独角兽公司 [3] - 经过3年迭代,LangChain 1.0正式发布,这是一次从零开始的重写,旨在使框架更精简、灵活和强大 [3][4] - 重写后的框架围绕循环内的工具调用Agent架构构建,模型无关性是其核心优势之一 [4] 公司发展历程 - LangChain 于2022年10月由机器学习工程师Harrison Chase作为副业发起,最初是一个约800行代码的单文件Python包 [5] - 项目灵感来源于Stable Diffusion发布后、ChatGPT问世前的时期,旨在解决工具碎片化和抽象不足的问题 [6] - 2023年4月公司正式成立,先后完成由Benchmark领投的1000万美元种子轮和由红杉领投的2500万美元A轮融资,A轮后估值达2亿美元 [7] - 目前是增长最快的开源项目之一,每月下载量高达8000万次,拥有118k GitHub star和19.4k个分支 [3] 产品架构与核心功能 - LangChain核心是一个"情境感知的推理型应用框架",包含组件与模块层以及端到端的链与应用层 [9] - 框架整合了超过700个不同的集成,涵盖10大类组件,每类有30到100个集成,支持Python和TypeScript两种版本 [10] - 坚持"模型与基础设施中立"路线,支持主流大模型和80种向量数据库,定位为连接不同技术触点的"粘合剂" [10] - 提供高层级接口,使开发者仅用5行代码就能开始使用RAG、SQL问答、提取等功能 [6] 重写背景与挑战 - 在高速集成阶段,项目积累了约2500个未解决问题和300-400个待处理PR,团队在2023年夏天收到大量负面反馈 [11] - 用户反馈的主要痛点包括易用性牺牲了定制化能力,高层级接口成为开发者推向生产环境时的阻碍 [11] - 为解决定制化需求,团队于2023年夏天开始开发LangGraph,并在2024年初正式推出,允许开发者以更底层的方式编排智能体逻辑 [12] LangChain 1.0 关键技术升级 - 以LangGraph为底座进行彻底架构重构,原生支持持久化、检查点恢复、人类在环与有状态交互等生产级需求 [18][27] - 引入统一的`create_agent`抽象,平衡强可控性与低门槛,让开发者用少量代码即可搭建经典的"模型-工具调用"循环 [19] - 新增中间件概念,允许在核心智能体循环的任意位置插入额外逻辑,支持动态提示词、动态工具和动态模型选择 [23][25][26] - 引入更规范的content blocks以统一不同模型的输入/输出结构,并精简代理选项以降低选择与调参成本 [27][30] 产品线与发展重点 - 公司目前有三条主要产品线:LangChain开源框架、LangGraph和闭源工具LangSmith [13] - LangChain开源框架的核心工作是生态系统的规模化管理,需要与大量合作伙伴协作 [13] - LangGraph当前聚焦于可扩展性、智能体集成开发环境与调试能力的提升 [13] - LangSmith作为公司主要收入来源,专注于LLM运维领域的可观察性和监控功能,团队正致力于推进其可扩展性 [12][13]