Workflow
LangGraph
icon
搜索文档
LangChain 彻底重写:从开源副业到独角兽,一次“核心迁移”干到 12.5 亿估值
AI前线· 2025-10-25 13:32
LangChain 1.0 版本重写概述 - LangChain 宣布完成1.25亿美元融资,投后估值达12.5亿美元,成为独角兽公司 [3] - 经过3年迭代,LangChain 1.0正式发布,这是一次从零开始的重写,旨在使框架更精简、灵活和强大 [3][4] - 重写后的框架围绕循环内的工具调用Agent架构构建,模型无关性是其核心优势之一 [4] 公司发展历程 - LangChain 于2022年10月由机器学习工程师Harrison Chase作为副业发起,最初是一个约800行代码的单文件Python包 [5] - 项目灵感来源于Stable Diffusion发布后、ChatGPT问世前的时期,旨在解决工具碎片化和抽象不足的问题 [6] - 2023年4月公司正式成立,先后完成由Benchmark领投的1000万美元种子轮和由红杉领投的2500万美元A轮融资,A轮后估值达2亿美元 [7] - 目前是增长最快的开源项目之一,每月下载量高达8000万次,拥有118k GitHub star和19.4k个分支 [3] 产品架构与核心功能 - LangChain核心是一个"情境感知的推理型应用框架",包含组件与模块层以及端到端的链与应用层 [9] - 框架整合了超过700个不同的集成,涵盖10大类组件,每类有30到100个集成,支持Python和TypeScript两种版本 [10] - 坚持"模型与基础设施中立"路线,支持主流大模型和80种向量数据库,定位为连接不同技术触点的"粘合剂" [10] - 提供高层级接口,使开发者仅用5行代码就能开始使用RAG、SQL问答、提取等功能 [6] 重写背景与挑战 - 在高速集成阶段,项目积累了约2500个未解决问题和300-400个待处理PR,团队在2023年夏天收到大量负面反馈 [11] - 用户反馈的主要痛点包括易用性牺牲了定制化能力,高层级接口成为开发者推向生产环境时的阻碍 [11] - 为解决定制化需求,团队于2023年夏天开始开发LangGraph,并在2024年初正式推出,允许开发者以更底层的方式编排智能体逻辑 [12] LangChain 1.0 关键技术升级 - 以LangGraph为底座进行彻底架构重构,原生支持持久化、检查点恢复、人类在环与有状态交互等生产级需求 [18][27] - 引入统一的`create_agent`抽象,平衡强可控性与低门槛,让开发者用少量代码即可搭建经典的"模型-工具调用"循环 [19] - 新增中间件概念,允许在核心智能体循环的任意位置插入额外逻辑,支持动态提示词、动态工具和动态模型选择 [23][25][26] - 引入更规范的content blocks以统一不同模型的输入/输出结构,并精简代理选项以降低选择与调参成本 [27][30] 产品线与发展重点 - 公司目前有三条主要产品线:LangChain开源框架、LangGraph和闭源工具LangSmith [13] - LangChain开源框架的核心工作是生态系统的规模化管理,需要与大量合作伙伴协作 [13] - LangGraph当前聚焦于可扩展性、智能体集成开发环境与调试能力的提升 [13] - LangSmith作为公司主要收入来源,专注于LLM运维领域的可观察性和监控功能,团队正致力于推进其可扩展性 [12][13]
速递|开源Agent框架开发商LangChain完成1.25亿美元融资,估值突破12.5亿美元
Z Potentials· 2025-10-24 16:18
融资与估值 - 公司本周一宣布完成1.25亿美元融资,估值达到12.5亿美元 [2] - 公司在2023年4月以Benchmark领投的1000万美元种子轮融资正式成立 [4] - 一周后,红杉资本主导的2500万美元A轮融资将公司估值推至2亿美元 [5] 投资方与背景 - 本轮融资由IVP领投,新晋投资方CapitalG和Sapphire Ventures加入,现有投资机构红杉资本、Benchmark和Amplify继续跟投 [3] - 公司始于2022年,由机器学习工程师Harrison Chase创建的开源项目 [3] 产品与技术发展 - 公司解决了利用早期大语言模型构建应用的多重难题,包括网页搜索、API调用和数据库交互 [3] - 公司已发展成构建智能体的平台,并推出了核心产品的全面升级,包括Agent构建工具LangChain、编排与上下文/记忆工具LangGraph,以及测试与可观测性工具LangSmith [5] 市场地位与社区影响 - 公司在开源开发者中保持超高人气,在GitHub上拥有11.8万星标和1.94万复刻分支 [6] - 公司被描述为AI时代的早期明星项目 [3]
速递|前Scale AI员工创业,AI协调平台1001 AI种子轮获900万美元,掘金中东北美关键实体产业
Z Potentials· 2025-10-22 10:38
融资与估值 - 公司完成1.25亿美元融资,估值达到12.5亿美元 [2] - 本轮融资由IVP领投,新投资方CapitalG和Sapphire Ventures加入,现有投资机构红杉资本、Benchmark和Amplify继续跟投 [2] - 公司在2023年4月以Benchmark领投的1000万美元种子轮正式成立,一周后红杉资本主导的2500万美元A轮融资将其估值推至2亿美元 [2] 公司发展与产品 - 公司始于2022年,是一个由机器学习工程师创建的开源项目,旨在解决利用早期大语言模型构建应用的多重难题 [2] - 公司已发展成为构建AI Agent的平台,并推出了核心产品的全面升级,包括代理构建工具LangChain、编排与上下文/记忆工具LangGraph,以及测试与可观测性工具LangSmith [3] - 公司在开源开发者中保持超高人气,在GitHub上拥有11.8万星标和1.94万复刻分支 [3]
LangChain 不看好 OpenAI AgentKit:世界不需要再来一个 Workflow 构建器
Founder Park· 2025-10-15 13:26
AgentKit产品定位与市场分析 - OpenAI发布AgentKit,提供可视化画布Agent Builder用于通过拖拽节点方式创建、管理和版本化多智能体工作流[2] - LangChain创始人认为市场不需要AgentKit这类可视化工作流构建器,其本质是构建Workflow而非真正的Agent[3][10] - 可视化工作流构建器处于尴尬位置,受到来自高复杂度与低复杂度两个方向的挤压:简单任务用无代码Agent更方便,复杂任务必须用代码实现稳定可靠[3][18] 工作流与Agent的本质区别 - Workflow流程固定,包含分支、并行等复杂逻辑,在可视化界面上体现为各种节点和连接线[2][9] - Agent逻辑被简化并抽象成自然语言,由LLM自主决定循环调用哪些工具来完成目标[2][8] - 工作流以牺牲自主性换取更高可预测性,Agent以牺牲可预测性换取更高自主性,但两者均无法单独保证稳定可靠的良好结果[8] 不同复杂度问题的解决方案 - 高复杂度场景需要代码化工作流实现高可靠性,需支持大量分支、并行处理和模块化设计[14] - 低复杂度场景可用无代码Agent(Prompt+工具)解决,其可靠性已足够且搭建更简单[16] - 随着LLM迭代,无代码Agent能解决的问题复杂度上限将持续提升[17] 无代码工作流构建器的核心问题与发展方向 - 无代码工作流构建器面临非技术用户使用不轻松、复杂任务难以管理导致界面杂乱等问题[22] - 未来方向应聚焦于让用户更轻松地用无代码方式搭建稳定可靠的Agent,而非低代码工作流[23] - 需优化代码生成模型,使其更擅长编写LLM驱动的工作流/Agent相关代码[23]
LangChain 推出开源异步编码智能体 Open SWE
AI前线· 2025-08-23 13:32
产品定位与架构 - 推出完全开源的异步编码智能体Open SWE 专为云端运行和复杂软件开发任务设计 代表从实时副驾驶助手向自主长期运行智能体的转变 [2] - 采用多智能体架构(Manager Planner Programmer Reviewer)生成高质量代码 Reviewer在创建拉取请求前检查错误以减少构建失败和重复审查周期 [3] - 基于LangGraph构建并通过LangGraph平台部署 该平台针对长期运行智能体优化 提供持久性 扩展性和部署灵活性 支持自托管企业部署 [5] 功能特性 - 直接连接GitHub仓库 通过GitHub Issues或专用UI分配任务 可研究代码库 生成计划 编写测试代码 审查并打开拉取请求 [2] - 在安全隔离的Daytona沙箱中运行 允许自由执行shell命令而不危及宿主环境 完全云端运行 并行处理多任务不消耗本地资源 [2] - 支持人在回路控制 开发人员可中断任务 请求更改或提供新指令无需重启 计划阶段可接受编辑或拒绝建议策略 支持双重文本功能 [3] 生态与市场反馈 - 在GitHub提供完整文档 支持开发人员扩展 自定义提示或集成到内部系统 定位为生产就绪助手和社区创新基础 [7] - 早期反应褒贬不一 Hacker News用户质疑LangChain生态系统能力 认为其智能体构建存在危险信号 [6]
最新Agent框架,读这一篇就够了
自动驾驶之心· 2025-08-19 07:32
主流AI AGENT框架 - 当前主流AI Agent框架种类繁多,各有侧重,适用于不同应用场景 [1] - 主要框架包括LangGraph、AutoGen、CrewAI、Smolagents和RAGFlow [2] - 各框架特点鲜明,LangGraph基于状态驱动,AutoGen强调多Agent对话,CrewAI专注协作,Smolagents轻量级,RAGFlow专注RAG流程 [2] CrewAI框架 - 开源多智能体协调框架,基于Python,通过角色扮演AI智能体协作完成任务 [3] - 核心特点包括独立架构、高性能设计、深度可定制化和全场景适用 [4] - 支持两种模式:Crews模式(智能协作团队)和Flows模式(事件工作流) [7] - 拥有超过10万认证开发者社区,生态活跃 [8] - 通过平衡易用性、灵活性与性能,帮助构建智能自动化系统 [9] CrewAI使用流程 - 创建项目结构清晰,遵循Python最佳实践,降低操作门槛 [11][12] - 配置文件与实现代码分离,便于调整行为 [13] - 可定义具有特定角色、目标和背景的AI agent [14] - 支持为agent分配具体工作并设置协作流程 [15][16][17][18] - 通过简单代码即可实现agent协同工作 [19][20] - 提供环境变量配置和依赖安装的便捷方式 [21][22][23] - 运行后可实时观察代理思考和输出,最终报告自动保存 [25][26] LangChain框架 - 由LangChain创建的开源AI代理框架,基于图的架构管理复杂工作流 [26] - 状态功能记录并追踪AI系统处理的所有信息 [30] - 支持创建反应式agent,配置LLM参数和自定义提示 [32][33][34][35] - 提供静态和动态两种提示类型 [36][37][38] - 支持记忆功能实现多轮对话 [39][40] - 可配置结构化输出,通过Pydantic模型定义响应格式 [41][42] - 推出LangGraph Studio可视化界面,降低使用门槛 [43] AutoGen框架 - 微软开源框架,支持多Agent对话协作完成任务 [44] - 统一接口设计,支持自动回复和动态对话 [44] - 提供易用灵活的开发框架,加速智能体AI研发 [46] - 核心特性包括多智能体对话、LLM与工具调用、自主工作流等 [46][49][50] - 提供开箱即用案例系统,覆盖多领域 [51] - 支持无代码执行和代码执行器配置 [53][54][55] - 代码执行器可在沙盒环境安全运行代码 [57][58][59][60][61][62][63][64] Smolagents框架 - HuggingFace推出的轻量级Agent开发库 [66] - 设计理念为"低门槛,高天花板,可拓展" [67] - 主要特点包括简洁实现、一流代码代理支持、通用工具调用等 [68][69] - 支持Hub集成,模型无关,可处理多模态输入 [70][71] - 提供丰富工具支持,包括MCP服务器、LangChain工具等 [72] - 安装简单,示例代码简洁明了 [74][75] RAGFlow框架 - 端到端RAG解决方案,专注深度文档理解 [75] - 核心能力包括高质量文本切片和异构数据源支持 [77][78] - 可智能识别文档结构,处理复杂格式非结构化数据 [77] - 支持多种文件类型,包括Word、PPT、Excel、图片等 [78] - 提供可控文本切片,多种模板选择 [77] - 适用于文档解析、知识问答和多模态数据处理 [79][86] 框架对比与选择 - CrewAI适合多智能体协作场景,如内容团队和市场分析 [80] - LangGraph适合复杂状态机和多步骤任务编排 [81] - AutoGen适合研究型任务和交互式应用 [82][86] - Smolagents适合快速开发和私有化部署 [82][86] - RAGFlow是处理多模态文档的首选方案 [82][86] - 选择依据包括协作需求、流程复杂度和开发轻量级要求 [86]
登上热搜!Prompt不再是AI重点,新热点是Context Engineering
机器之心· 2025-07-03 16:01
上下文工程的核心概念 - 将LLM视为通用的、不确定的文本生成函数而非拟人化实体 强调其无状态特性 需通过输入文本来控制输出[4][5][8] - 上下文工程的核心在于构建有效输入文本系统 而非依赖单句"魔法咒语"式的提示词工程[9][11] - LLM被类比为新型操作系统 需要为其准备完整运行环境而非零散指令[13] 上下文工程的技术要素 - 采用自动化系统构建"信息流水线" 从多源自动抓取整合数据形成完整上下文[15][17] - 工具箱包含四大核心工具:指令下达、知识记忆管理、检索增强生成(RAG)、智能体自主查资料[19][21] - RAG技术通过知识库检索防止模型幻觉 确保回答基于事实[19] - 智能体技术实现动态信息获取 自主判断需求并整合多源数据[21] 工程实践方法论 - 采用科学实验式流程 分"从后往前规划"和"从前往后构建"两阶段实施[23][24][25] - 实施路径:明确输出目标→倒推所需输入→设计自动化生产系统[26] - 模块化开发流程:依次测试数据接口、搜索功能、打包程序 最终进行端到端系统测试[30] - LangChain生态提供实践支持 包括LangGraph和LangSmith等工具[29][31]
深度|吴恩达:语音是一种更自然、更轻量的输入方式,尤其适合Agentic应用;未来最关键的技能,是能准确告诉计算机你想要什么
Z Potentials· 2025-06-16 11:11
Agentic系统构建 - 从讨论"是否是Agent"转向"Agentic性光谱"的思维转变 更有效减少定义争论[4][5] - 实际应用中更多机会集中在简单线性流程自动化 而非高度自治的复杂系统[6][7] - 企业面临的主要挑战是如何将现有工作流拆解为可自动化的"微任务"并建立评估体系[7] AI开发关键技能 - 掌握LangGraph/RAG/memory/evals等工具的组合应用能力 如同搭建乐高积木[9][11] - 建立系统性评估体系至关重要 可避免在错误路径上浪费数月时间[10] - AI辅助编程显著提升开发效率 但部分企业仍禁止使用[15] - 语音技术栈(voice stack)被严重低估 在降低用户交互门槛方面潜力巨大[15][18] 技术演进趋势 - MCP协议通过统一API标准显著简化数据对接流程 使集成成本从N×M降至N+M[21][22] - Agent间协作仍处早期阶段 跨团队Agent协同目前几乎没有成功案例[23] - 语音交互面临延迟挑战 需采用预响应机制等技巧优化用户体验[19] 初创企业建议 - 执行速度是初创企业成功的第一关键指标[26] - 技术知识深度比商业知识更为稀缺和关键[26] - 编程能力将成为基础技能 能明确表达需求比编码本身更重要[24]
Agents和Workflows孰好孰坏,LangChain创始人和OpenAI杠上了
Founder Park· 2025-04-21 20:23
行业观点分歧 - OpenAI发布构建AI Agents的实用指南,主张通过LLMs主导Agent设计[2] - LangChain创始人反对严格区分Agent类型,认为理想框架应允许结构化工作流向模型驱动灵活过渡[2] - Anthropic提出"Agentic系统"概念,将Workflows和Agents视为同一系统的不同表现形式[2][12] - 大模型派(Big Model)强调通用型智能体系统,工作流派(Big Workflow)主张模块化工作流构建[2] Agent定义差异 - OpenAI定义Agent为"能代表用户独立完成任务"的宏观系统[10] - Anthropic将Agent明确区分为预设规则的Workflows和动态决策的Agents[12][13] - 实际生产环境中大多数系统采用Workflows和Agents混合模式[16][20] - 建议采用"Agentic程度"的连续光谱概念替代二元分类[21] 技术实现挑战 - 构建可靠Agent的核心难点在于确保LLM每步获取精准上下文[26][27] - 上下文传递问题常源于系统提示不完整、工具描述不当或响应格式错误[28] - 声明式框架可视化清晰但动态性不足,代码优先方案更灵活但控制复杂[6][41] - 多Agent系统需解决通信机制问题,可采用交接或工作流混合模式[45][46] 框架设计维度 - 成熟框架需同时支持Workflows和Agents两种模式[32] - 需平衡可预测性与自主性,不同应用场景需求各异[33] - 理想框架应兼具低门槛(易用性)与高上限(扩展性)[37][40] - LangGraph采用声明式与命令式混合API,支持持久化与流式传输[30][31] 生产环境考量 - Agentic系统通常需牺牲延迟和成本换取任务表现[20][63] - 企业级应用需特殊功能如人工监督、容错机制和长期记忆存储[53][57] - 垂直领域需定制化方案,通用模型难以满足独特业务需求[67] - 框架价值体现在标准化构建方式、调试工具和生产级功能集成[49]