LangGraph

搜索文档
登上热搜!Prompt不再是AI重点,新热点是Context Engineering
机器之心· 2025-07-03 16:01
上下文工程的核心概念 - 将LLM视为通用的、不确定的文本生成函数而非拟人化实体 强调其无状态特性 需通过输入文本来控制输出[4][5][8] - 上下文工程的核心在于构建有效输入文本系统 而非依赖单句"魔法咒语"式的提示词工程[9][11] - LLM被类比为新型操作系统 需要为其准备完整运行环境而非零散指令[13] 上下文工程的技术要素 - 采用自动化系统构建"信息流水线" 从多源自动抓取整合数据形成完整上下文[15][17] - 工具箱包含四大核心工具:指令下达、知识记忆管理、检索增强生成(RAG)、智能体自主查资料[19][21] - RAG技术通过知识库检索防止模型幻觉 确保回答基于事实[19] - 智能体技术实现动态信息获取 自主判断需求并整合多源数据[21] 工程实践方法论 - 采用科学实验式流程 分"从后往前规划"和"从前往后构建"两阶段实施[23][24][25] - 实施路径:明确输出目标→倒推所需输入→设计自动化生产系统[26] - 模块化开发流程:依次测试数据接口、搜索功能、打包程序 最终进行端到端系统测试[30] - LangChain生态提供实践支持 包括LangGraph和LangSmith等工具[29][31]
深度|吴恩达:语音是一种更自然、更轻量的输入方式,尤其适合Agentic应用;未来最关键的技能,是能准确告诉计算机你想要什么
Z Potentials· 2025-06-16 11:11
Agentic系统构建 - 从讨论"是否是Agent"转向"Agentic性光谱"的思维转变 更有效减少定义争论[4][5] - 实际应用中更多机会集中在简单线性流程自动化 而非高度自治的复杂系统[6][7] - 企业面临的主要挑战是如何将现有工作流拆解为可自动化的"微任务"并建立评估体系[7] AI开发关键技能 - 掌握LangGraph/RAG/memory/evals等工具的组合应用能力 如同搭建乐高积木[9][11] - 建立系统性评估体系至关重要 可避免在错误路径上浪费数月时间[10] - AI辅助编程显著提升开发效率 但部分企业仍禁止使用[15] - 语音技术栈(voice stack)被严重低估 在降低用户交互门槛方面潜力巨大[15][18] 技术演进趋势 - MCP协议通过统一API标准显著简化数据对接流程 使集成成本从N×M降至N+M[21][22] - Agent间协作仍处早期阶段 跨团队Agent协同目前几乎没有成功案例[23] - 语音交互面临延迟挑战 需采用预响应机制等技巧优化用户体验[19] 初创企业建议 - 执行速度是初创企业成功的第一关键指标[26] - 技术知识深度比商业知识更为稀缺和关键[26] - 编程能力将成为基础技能 能明确表达需求比编码本身更重要[24]
Agents和Workflows孰好孰坏,LangChain创始人和OpenAI杠上了
Founder Park· 2025-04-21 20:23
行业观点分歧 - OpenAI发布构建AI Agents的实用指南,主张通过LLMs主导Agent设计[2] - LangChain创始人反对严格区分Agent类型,认为理想框架应允许结构化工作流向模型驱动灵活过渡[2] - Anthropic提出"Agentic系统"概念,将Workflows和Agents视为同一系统的不同表现形式[2][12] - 大模型派(Big Model)强调通用型智能体系统,工作流派(Big Workflow)主张模块化工作流构建[2] Agent定义差异 - OpenAI定义Agent为"能代表用户独立完成任务"的宏观系统[10] - Anthropic将Agent明确区分为预设规则的Workflows和动态决策的Agents[12][13] - 实际生产环境中大多数系统采用Workflows和Agents混合模式[16][20] - 建议采用"Agentic程度"的连续光谱概念替代二元分类[21] 技术实现挑战 - 构建可靠Agent的核心难点在于确保LLM每步获取精准上下文[26][27] - 上下文传递问题常源于系统提示不完整、工具描述不当或响应格式错误[28] - 声明式框架可视化清晰但动态性不足,代码优先方案更灵活但控制复杂[6][41] - 多Agent系统需解决通信机制问题,可采用交接或工作流混合模式[45][46] 框架设计维度 - 成熟框架需同时支持Workflows和Agents两种模式[32] - 需平衡可预测性与自主性,不同应用场景需求各异[33] - 理想框架应兼具低门槛(易用性)与高上限(扩展性)[37][40] - LangGraph采用声明式与命令式混合API,支持持久化与流式传输[30][31] 生产环境考量 - Agentic系统通常需牺牲延迟和成本换取任务表现[20][63] - 企业级应用需特殊功能如人工监督、容错机制和长期记忆存储[53][57] - 垂直领域需定制化方案,通用模型难以满足独特业务需求[67] - 框架价值体现在标准化构建方式、调试工具和生产级功能集成[49]