AI Scientist
搜索文档
智源发布 2026 十大 AI 技术趋势:世界模型成 AGI 共识方向
AI前线· 2026-01-18 13:32
文章核心观点 - 人工智能发展的核心正发生关键转移,从追求参数规模的语言学习,迈向对物理世界底层秩序的深刻理解与建模,行业技术范式迎来重塑 [2] - 2026年将是AI从数字世界迈入物理世界、从技术演示走向规模价值的关键分水岭 [8] - 这一转变由三条主线驱动:认知范式的“升维”、智能形态的“实体化”与“社会化”、价值兑现的“双轨应用” [8] 2026年十大AI技术趋势总结 趋势1:世界模型成为AGI共识方向,Next-State Prediction或成新范式 - 行业共识正从语言模型转向能理解物理规律的多模态世界模型 [9] - 从“预测下一个词”到“预测世界下一状态”,NSP范式标志着AI开始掌握时空连续性与因果关系 [9] - 以智源悟界多模态世界模型为代表验证了这一路径,推动AI从感知走向真正的认知与规划 [9] 趋势2:具身智能迎来行业“出清”,产业应用迈入广泛工业场景 - 具身智能正脱离实验室演示,进入产业筛选与落地阶段 [10] - 随着大模型与运动控制、合成数据结合,人形机器人将于2026年突破Demo,转向真实的工业与服务场景 [10] - 具备闭环进化能力的企业将在这一轮商业化竞争中胜出 [10] 趋势3:多智能体系统决定应用上限,Agent时代的“TCP/IP”初具雏形 - 复杂问题的解决依赖多智能体协同 [11] - 随着MCP、A2A等通信协议趋于标准化,智能体间拥有了通用“语言” [11] - 多智能体系统将突破单体智能天花板,在科研、工业等复杂工作流中成为关键基础设施 [11] 趋势4:AI Scientist成为AI4S北极星,国产科学基础模型悄然孕育 - AI在科研中的角色正从辅助工具升级为自主研究的“AI科学家” [12] - 科学基础模型与自动化实验室的结合,将极大加速新材料与药物研发 [12] - 报告强调,我国需整合力量,加快构建自主的科学基础模型体系 [12] 趋势5:AI时代的新“BAT”趋于明确,垂直赛道仍有高盈利玩法 - C端AI超级应用的“All in One”入口成为巨头角逐焦点 [13] - 海外以OpenAI的ChatGPT与Google Gemini为引领,通过深度集成各类服务,塑造了一体化智能助手的新范式 [13] - 国内字节、阿里、蚂蚁等依托生态积极布局,其中蚂蚁推出的全模态AI助手“灵光”与AI健康应用“蚂蚁阿福”分别在超级应用与健康垂直领域进行探索 [13] 趋势6:企业级AI应用从“幻灭低谷”走向价值兑现 - 企业级AI应用在经历概念验证热潮后,因数据、成本等问题正步入“幻灭低谷期” [15] - 但随着数据治理与工具链成熟,预计2026年下半年将迎来转折 [15] - 一批真正可衡量价值的MVP产品将在垂直行业规模落地 [15] 趋势7:合成数据占比攀升,有望破除“2026年枯竭魔咒” - 高质量真实数据面临枯竭,合成数据正成为模型训练的核心燃料 [16] - “修正扩展定律”为其提供了理论支撑 [16] - 尤其在自动驾驶和机器人领域,由世界模型生成的合成数据,将成为降低训练成本、提升性能的关键资产 [16] 趋势8:推理优化远未触顶,“技术泡沫”是假命题 - 推理效率仍是AI大规模应用的核心瓶颈与竞争焦点 [17] - 通过算法创新与硬件变革,推理成本持续下降,能效比不断提升 [17] - 这使得在资源受限的边缘端部署高性能模型成为可能,是AI普惠的关键前提 [17] 趋势9:开源编译器生态汇聚众智,异构全栈底座引领算力普惠 - 为打破算力垄断与供应风险,构建兼容异构芯片的软件栈至关重要 [18] - 繁荣的算子语言与趋于收敛的编译器技术正在降低开发门槛 [18] - 以智源FlagOS为代表的平台,致力于构建软硬解耦、开放普惠的AI算力底座 [18] 趋势10:从幻觉到欺骗,AI安全迈向机制可解释与自演化攻防 - AI安全风险已从“幻觉”演变为更隐蔽的“系统性欺骗” [19] - 技术上,Anthropic的回路追踪研究致力于从内部理解模型机理;OpenAI推出自动化安全研究员 [19] - 产业上,安全水位成为落地生死线,蚂蚁集团构建“对齐 - 扫描 - 防御”全流程体系,推出智能体可信互连技术(ASL)及终端安全框架gPass;智源研究院联合全球学者发布AI欺骗系统性国际报告,警示前沿风险 [19]
从“预测下一个词”到“预测世界状态”:智源发布2026十大 AI技术趋势
搜狐财经· 2026-01-09 08:02
核心观点 - 人工智能行业的技术演进核心正发生关键转移,从追求参数规模的语言学习迈向对物理世界底层秩序的深刻理解与建模,行业技术范式迎来重塑[1] - 2026年将是AI从数字世界迈入物理世界、从技术演示走向规模价值的关键分水岭[5] 认知范式变革 - 基础模型的竞争焦点已从“参数有多大”转变为“能否理解世界如何运转”,正从“预测下一个词”跨越到“预测世界的下一个状态”[4] - 以“Next-State Prediction”(NSP)为代表的新范式,正推动AI从数字空间的“感知”迈向物理世界的“认知”与“规划”[4] - 以世界模型和NSP为核心,AI开始学习物理规律,这为自动驾驶仿真、机器人训练等复杂任务提供全新的“认知”基础[6] - 行业共识正从语言模型转向能理解物理规律的多模态世界模型,NSP范式标志着AI开始掌握时空连续性与因果关系[7] 智能形态演进 - 智能正从软件走向实体,从单体走向协同,头部科技公司的人形机器人正进入真实生产场景,标志着“具身智能”走出实验室[6] - 具身智能正脱离实验室演示,进入产业筛选与落地阶段,人形机器人将于2026年突破Demo,转向真实的工业与服务场景[8] - 随着MCP、A2A等通信协议趋于标准化,智能体间拥有了通用“语言”,多智能体系统将突破单体智能天花板,在科研、工业等复杂工作流中成为关键基础设施[9] 应用与价值兑现 - 在消费端,一个“All in One”的超级应用入口正在形成,国内外科技巨头基于各自生态积极构建一体化AI门户[6] - 海外以OpenAI的ChatGPT与Google Gemini为引领,通过深度集成各类服务,塑造了一体化智能助手的新范式;国内字节、阿里、蚂蚁等依托生态积极布局[11] - 在企业端,经历早期概念验证的“幻灭期”后,AI正凭借更好的数据治理与行业标准接口,在垂直领域孕育出真正可衡量商业价值的产品[6] - 企业级AI应用预计2026年下半年将迎来转折,一批真正可衡量价值的MVP产品将在垂直行业规模落地[12] - AI在科研中的角色正从辅助工具升级为自主研究的“AI科学家”,科学基础模型与自动化实验室的结合将极大加速新材料与药物研发[10] 基础设施与关键技术 - 高质量真实数据面临枯竭,合成数据正成为模型训练的核心燃料,尤其在自动驾驶和机器人领域,由世界模型生成的合成数据将成为降低训练成本、提升性能的关键资产[13] - 推理效率仍是AI大规模应用的核心瓶颈与竞争焦点,通过算法创新与硬件变革,推理成本持续下降,能效比不断提升[15] - 为打破算力垄断与供应风险,构建兼容异构芯片的软件栈至关重要,繁荣的算子语言与趋于收敛的编译器技术正在降低开发门槛[16] 安全与风险 - AI安全风险已从“幻觉”演变为更隐蔽的“系统性欺骗”[17] - 技术上,Anthropic的回路追踪研究致力于从内部理解模型机理;OpenAI推出自动化安全研究员[17] - 产业上,安全水位成为落地生死线,蚂蚁集团构建“对齐-扫描-防御”全流程体系,推出智能体可信互连技术(ASL)及终端安全框架gPass[17]
智源研究院发布2026十大AI技术趋势:NSP范式重构世界认知,超级应用与安全并进
环球网· 2026-01-08 17:41
核心观点 - 人工智能行业的技术演进核心正发生关键转移,从追求参数规模的语言学习,迈向对物理世界底层秩序的深刻理解与建模,行业技术范式迎来重塑 [1] - 2026年将是AI从数字世界迈入物理世界、从技术演示走向规模价值的关键分水岭 [2] 技术范式转变 - 基础模型的竞争焦点已从“参数有多大”转变为“能否理解世界如何运转”,正从“预测下一个词”跨越到“预测世界的下一个状态” [1] - 以“Next-State Prediction”为代表的新范式,正推动AI从数字空间的“感知”迈向物理世界的“认知”与“规划” [1] - 行业共识正从语言模型转向能理解物理规律的多模态世界模型,NSP范式标志着AI开始掌握时空连续性与因果关系 [3] 驱动转变的三条主线 - **认知范式的“升维”**:以世界模型和NSP为核心,AI开始学习物理规律,为自动驾驶仿真、机器人训练等复杂任务提供全新的“认知”基础 [2] - **智能形态的“实体化”与“社会化”**:智能正从软件走向实体,从单体走向协同,人形机器人进入真实生产场景,同时多智能体通信协议标准化使其能以“团队”形式工作 [2] - **价值兑现的“双轨应用”**:消费端正在形成“All in One”的超级应用入口,企业端AI在经历早期“幻灭期”后,正凭借更好的数据治理与行业标准接口,在垂直领域孕育出真正可衡量商业价值的产品 [2] 十大AI技术趋势详情 - **趋势1:世界模型成为AGI共识方向,Next-State Prediction或成新范式**:以智源悟界多模态世界模型为代表,推动AI从感知走向真正的认知与规划 [3][5] - **趋势2:具身智能迎来行业“出清”,产业应用迈入广泛工业场景**:人形机器人将于2026年突破Demo,转向真实的工业与服务场景,具备闭环进化能力的企业将在商业化竞争中胜出 [3] - **趋势3:多智能体系统决定应用上限,Agent时代的“TCP/IP”初具雏形**:随着MCP、A2A等通信协议趋于标准化,多智能体系统将突破单体智能天花板,在科研、工业等复杂工作流中成为关键基础设施 [3] - **趋势4:AI Scientist成为AI4S北极星,国产科学基础模型悄然孕育**:AI在科研中的角色正从辅助工具升级为自主研究的“AI科学家”,我国需整合力量加快构建自主的科学基础模型体系 [4] - **趋势5:AI时代的新“BAT”趋于明确,垂直赛道仍有高盈利玩法**:C端AI超级应用的“All in One”入口成为巨头角逐焦点,海外以OpenAI的ChatGPT与Google Gemini为引领,国内字节、阿里、蚂蚁等依托生态积极布局,蚂蚁推出了全模态AI助手“灵光”与AI健康应用“蚂蚁阿福” [4][6] - **趋势6:产业应用滑向“幻灭低谷期”,2026H2迎来“V型”反转**:企业级AI应用因数据、成本等问题正步入“幻灭低谷期”,但预计2026年下半年将迎来转折,一批真正可衡量价值的MVP产品将在垂直行业规模落地 [7] - **趋势7:合成数据占比攀升,有望破除“2026年枯竭魔咒”**:高质量真实数据面临枯竭,合成数据正成为模型训练的核心燃料,尤其在自动驾驶和机器人领域,由世界模型生成的合成数据将成为降低训练成本、提升性能的关键资产 [8] - **趋势8:推理优化远未触顶,“技术泡沫”是假命题**:推理效率仍是AI大规模应用的核心瓶颈与竞争焦点,通过算法创新与硬件变革,推理成本持续下降,能效比不断提升,使得在资源受限的边缘端部署高性能模型成为可能 [9] - **趋势9:开源编译器生态汇聚众智,异构全栈底座引领算力普惠**:为打破算力垄断与供应风险,构建兼容异构芯片的软件栈至关重要,以智源FlagOS为代表的平台,致力于构建软硬解耦、开放普惠的AI算力底座 [10] - **趋势10:从幻觉到欺骗,AI安全迈向机制可解释与自演化攻防**:AI安全风险已从“幻觉”演变为更隐蔽的“系统性欺骗”,技术上如Anthropic的回路追踪研究和OpenAI的自动化安全研究员,产业上如蚂蚁集团构建“对齐-扫描-防御”全流程体系并推出智能体可信互连技术(ASL)及终端安全框架gPass,智源研究院联合全球学者发布了AI欺骗系统性国际报告 [11]
智源研究院发布2026十大AI技术趋势
经济观察网· 2026-01-08 17:08
核心观点 - 人工智能行业的技术演进核心正从追求参数规模的语言学习,转向对物理世界底层秩序的深刻理解与建模,行业技术范式迎来重塑 [1] 技术范式转移 - 行业共识正从语言模型转向能理解物理规律的多模态世界模型,从“预测下一个词”到“预测世界下一状态”的NSP范式标志着AI开始掌握时空连续性与因果关系 [1] - 以智源悟界多模态世界模型为代表验证了这一路径,推动AI从感知走向真正的认知与规划 [1] 具身智能与机器人产业化 - 具身智能正脱离实验室演示,进入产业筛选与落地阶段 [2] - 随着大模型与运动控制、合成数据结合,人形机器人将于2026年突破Demo,转向真实的工业与服务场景 [2] - 具备闭环进化能力的企业将在这一轮商业化竞争中胜出 [2] 多智能体系统与通信协议 - 复杂问题的解决依赖多智能体协同,多智能体系统将突破单体智能天花板 [2] - 随着MCP、A2A等通信协议趋于标准化,智能体间拥有了通用“语言”,Agent时代的“TCP/IP”初具雏形 [2] - 多智能体系统将在科研、工业等复杂工作流中成为关键基础设施 [2] AI在科学研究中的应用 - AI在科研中的角色正从辅助工具升级为自主研究的“AI科学家” [2] - 科学基础模型与自动化实验室的结合,将极大加速新材料与药物研发 [2] - 报告强调,我国需整合力量,加快构建自主的科学基础模型体系 [2] 市场竞争格局与超级应用 - C端AI超级应用的“All in One”入口成为巨头角逐焦点 [3] - 海外以OpenAI的ChatGPT与Google Gemini为引领,通过深度集成各类服务,塑造了一体化智能助手的新范式 [3] - 国内字节、阿里、蚂蚁等依托生态积极布局,蚂蚁推出的全模态AI助手“灵光”与AI健康应用“蚂蚁阿福”分别在超级应用与健康垂直领域进行探索 [3] - AI时代的“新BAT”格局正在形成 [3] 产业应用落地周期 - 企业级AI应用在经历概念验证热潮后,因数据、成本等问题正步入“幻灭低谷期” [4] - 预计2026年下半年将迎来转折,一批真正可衡量价值的MVP产品将在垂直行业规模落地 [4] 合成数据的重要性 - 高质量真实数据面临枯竭,合成数据正成为模型训练的核心燃料 [4] - “修正扩展定律”为其提供了理论支撑 [4] - 在自动驾驶和机器人领域,由世界模型生成的合成数据将成为降低训练成本、提升性能的关键资产 [4] 推理效率与成本优化 - 推理效率仍是AI大规模应用的核心瓶颈与竞争焦点 [5] - 通过算法创新与硬件变革,推理成本持续下降,能效比不断提升 [5] - 这使得在资源受限的边缘端部署高性能模型成为可能,是AI普惠的关键前提 [5] 开源生态与算力底座 - 为打破算力垄断与供应风险,构建兼容异构芯片的软件栈至关重要 [6] - 繁荣的算子语言与趋于收敛的编译器技术正在降低开发门槛 [6] - 以智源FlagOS为代表的平台,致力于构建软硬解耦、开放普惠的AI算力底座 [6] AI安全风险与防御 - AI安全风险已从“幻觉”演变为更隐蔽的“系统性欺骗” [7] - 技术上,Anthropic的回路追踪研究致力于从内部理解模型机理,OpenAI推出自动化安全研究员 [7] - 产业上,安全水位成为落地生死线,蚂蚁集团构建“对齐-扫描-防御”全流程体系,推出智能体可信互连技术(ASL)及终端安全框架gPass [7] - 智源研究院联合全球学者发布AI欺骗系统性国际报告,警示前沿风险 [7] - 安全正内化为AI系统的免疫基因 [7]
AI4Science 图谱,如何颠覆10年 x 20亿美金成本的药物研发模式
海外独角兽· 2025-06-18 20:27
核心观点 - AI for Science 正在将生命科学与数字互联网两大科技树交汇并加速,大模型对生物系统等复杂系统具有前所未有的理解和生成能力,有望成为加速科学发现的关键引擎 [3] - Foundation Model + AI Agent 正在颠覆传统高成本、慢速的试错式科研流程,将药物研发从平均10年、20亿美元的成本重新压缩与重构 [3][7] - 行业采用「Tech/Bio × Generalist/Specialist」四象限框架梳理玩家,包括Biology Foundation Model、AI Scientist、AI-Native Therapeutics和AI-empowered solution四大类 [4] 研究框架 - 横轴:Generalist vs Specialist,评估公司在生物医药研发流程中的广度和深度,左侧偏单点聚焦,右侧偏全流程技术平台 [8] - 纵轴:Tech vs Bio,评估企业产品侧重平台技术能力还是直接解决生物/临床问题,上方接近技术方案交付,下方需完整开发药物/疗法 [9] Tech × Specialist:Biology foundation model - AlphaFold 3 解决了蛋白质三维结构预测难题,将数月甚至数年的实验缩短为计算机快速预测,并扩展到预测蛋白质与DNA、RNA、小分子等的复合物结构与相互作用 [14] - Isomorphic Labs 由DeepMind分拆成立,已与礼来和诺华签署总里程碑达26.5亿欧元的合作协议,定位为技术平台提供方 [15] - ESM3 旨在打造通用生物基础模型,整合序列、结构、功能三个模态,存在1.4B、7B、98B三种尺寸,展现明显Scaling Law [17][18] - Evo2 是基因组语言模型,在超9万亿碱基序列上训练,拥有100万碱基的超长上下文窗口,能预测变异功能和设计生物序列 [22][23] Tech × Biologist:自动化科研平台 - AI Scientist 通过LLM的推理、规划、工具使用能力,整合文献检索、实验设计、数据分析、机器人控制等环节,将科研从劳动密集型转变为知识和算力密集型 [24][25] - Future House 发布Crow、Falcon、Owl、Phoenix四款Agent,组成多智能体系统Robin,在2.5个月内完成端到端科研循环,发现治疗干性年龄相关性黄斑变性的全新药物方案 [26][34][35][36][37] - Lila Sciences 构建"科学超级智能平台",已在基因药物设计、新型治疗分子发现、绿色能源技术创新、碳捕获材料设计等方面取得进展 [39] Bio × Generalist:AI-native Therapeutics - AI-native制药公司构建以AI为核心的整合平台,自主研发创新疗法管线,AI不仅仅是工具而是研发范式的基础和引擎 [40] - Xaira Therapeutics 募集约10亿美元启动资金,重点方向包括蛋白质生成式模型、多模态数据工厂和端到端推进管线 [49][50] - Generate Biomedicines 采用"生成生物学"方法,已与安进、诺华签订潜在里程碑超过10亿美元的合作协议,累计融资超过7亿美元 [51][52][53] - Somite AI 聚焦"可编程细胞疗法",完成4700万美元A轮融资,开发DeltaStem基座模型预测细胞命运转变路径 [54][55][56] - Moonwalk Bio 专注"精准表观遗传编辑",种子+A轮总融资约5700万美元,开发EpiRead和EpiWrite技术 [57][58][59] Bio × Specialist:AI赋能解决方案 - 实验数据平台批量生成并开源稀缺实验数据,降低AI4sci模型训练门槛,如Tahoe Therapeutics发布的单细胞扰动数据集涵盖1亿细胞/6万次化学-生物扰动 [63][64] - 多组学靶点发现整合DNA、蛋白、显微图像和临床表型等多模态数据,训练跨尺度Foundation Model直接输出新靶点与作用机制假设 [65][66] - 药物重定位将已上市或临床搁浅的药物与新疾病通路快速匹配,可跳过毒理与I期,如Healx的候选药HLX-1502已进入NF-1 II期 [68][69][70][73] - 临床试验加速用AI优化患者匹配,如Unlearn AI的数字孪生技术可将招募期缩短30-50% [75][76] 行业趋势 - 价值正在从传统CRO与药企的"手工试错"转移到掌握数据、模型飞轮与自动化实验室的AI原生公司手中 [78] - 行业进入"算力-数据-算法"驱动的指数级进步时代,四类玩家分别在单点突破、科研流程产品化、新疗法开发和关键环节优化方面推动变革 [78]