Workflow
Agent范式
icon
搜索文档
一堂「强化学习」大师课 | 42章经
42章经· 2025-04-13 20:02
技术原理 - 强化学习(RL)是用于解决多步决策问题的算法框架,与传统机器学习不同,无标准答案但有反馈机制评判结果[3][7] - 大语言模型(LLM)本质是预测下一个词,存在不遵从指令的缺陷,通过与 RL 结合解决该问题[8][9][10] 行业应用 - RL+LLM 应用广泛,海外 OpenAI 的 RL 已从纯推理进化到 Agent 范式,实现多轮交互和上网互动[21] - 国内豆包和 DeepSeek 等团队在探索 RL+LLM 的新可能性,不同公司在该路径上出现编程、Agent、通用泛化能力等分支[21][26][27][28] 发展趋势 - 预训练的规模法则收益变小,但仍有数据和模型小型化两个发展方向;RL 的规模法则处于初始阶段,决策能力将持续提升[26] 人才与基建 - RL 人才稀缺,因门槛高、工业界应用少、对工程要求高;开源工作可降低使用门槛,如 AReaL - boba 框架[33][34][35][36] 训练与评估 - RL 训练中基建最重要,其次是数据和算法;评估可看准确率和多轮交互体验[29] 组织架构 - 大模型团队最好将 LLM 和 RL 两条线融合,至少设预训练和后训练团队,再按目标细分[31]