Workflow
Generative Interactive Environments
icon
搜索文档
DeepMind科学家揭秘Genie 3:自回归架构如何让AI建构整个世界 | Jinqiu Select
锦秋集· 2025-08-06 17:07
核心观点 - Google DeepMind发布的Genie 3是一种革命性的通用世界模型,能够从文本或图像生成高度互动的3D环境,支持实时交互和动态修改 [1] - 该技术有望开启万亿美元商业版图,成为VR领域的杀手级应用,其核心是生成式交互环境模型,融合游戏引擎、物理模拟器和视频生成模型的特性 [9] - Genie 3代表了从手工编码到AI生成的世界模型演进,通过海量数据自主学习环境动态规律,终极目标是仅用文本提示生成任意交互式世界 [10] 技术演进 - 初代Genie通过3万小时2D游戏录像训练,自主学会视差效应等物理规律,创新包括时空视频编码器、潜在大动作模型和自回归动态模型 [11] - Genie 2实现3D跨越,视觉保真度提升至360p,模拟现实光照效果,具备记忆能力和物体恒存性 [12] - Genie 3分辨率达720p,实现照片级逼真体验和数分钟持续交互,融合VEO视频生成模型优点,展现超长上下文窗口和卓越一致性 [13][14] 关键特性 - 输入方式从图像转为文本提示,提供更大灵活性,支持环境多样性、长时程交互和提示控制的世界事件 [15] - 通过随机神经网络实现世界一致性,自回归架构使模型参考历史生成画面,新区域保留随机性,区分能力来自大规模训练 [16] - 核心应用是为具身智能体训练提供平台,模拟现实场景如自动驾驶罕见事件,形成世界基础模型愿景 [17] 行业影响 - 创造全新互动娱乐形态,类似YouTube 2.0或体验机器,用户可共同创造永不终结的虚拟宇宙 [19] - 简化交互式动态图形制作流程,与传统游戏引擎形成互补而非替代关系 [22] - 有望解决仿真到现实鸿沟,通过逼真世界模拟让AI安全走向真实环境 [23] 技术局限 - 目前仅支持单智能体体验,多智能体系统仍在开发中 [20] - 可靠性问题存在,完全物理和逻辑准确性需时间迭代,无法生成未训练数据场景如古代战役 [20] - 计算速度限制模型复杂度,采用模块化方案如Gemini与Genie 3协同工作 [20]