Workflow
SLAM重建
icon
搜索文档
当下自动驾驶的技术发展,重建还有哪些应用?
自动驾驶之心· 2025-06-29 16:19
4D标注之静态元素 - 自动驾驶技术发展推动重建应用从SLAM转向4D标注 静态元素标注只需在重建3D场景中标注一次 大幅提升效率[1] - 静态元素标注输入为Lidar或多摄像头重建的3D图 输出为矢量车道线(由N个有序xyz坐标点组成)和类别[5] - 地面重建获取2D BEV车道线 静态点云重建获取3D障碍物信息[6] 重建技术流程 - 激光/视觉里程计获取自车位姿 地面语义分割采用SAM等开源模型[7] - 地面重建采用RoME方法 将语义投影到网格化点云 静态场景点云重建完成整体构建[7] 4D自动标注核心难点 - 时空一致性要求高 需连续帧精准追踪动态目标运动轨迹[8] - 多模态数据融合复杂 需解决激光雷达 相机 雷达的坐标对齐和时延补偿[8] - 动态场景泛化难度大 交通参与者行为不确定性和环境干扰增加模型挑战[8] - 标注效率与成本矛盾 高精度标注依赖人工校验但海量数据导致周期长[8] - 量产场景泛化要求高 需适应不同城市 道路 天气等复杂条件[8] 4D标注课程体系 - 动态障碍物标注涵盖3D检测算法(SAFDNet) 多目标跟踪(DetZero)及数据质检[12] - 激光&视觉SLAM重建讲解Graph-based算法和评价指标[13] - 静态元素标注基于全局clip道路信息实现自动化[15] - 通用障碍物OCC标注解析特斯拉Occupancy Network方案及稠密化优化[16] - 端到端真值生成打通动态障碍物 静态元素 可行驶区域和自车轨迹[17] - 数据闭环专题涵盖scaling law验证 架构痛点及岗位面试要点[19] 行业技术趋势 - 4D标注算法向端到端发展 实现动静态元素 可行驶区域的全流程自动化[17] - OCC技术成为感知标配 基于Lidar和视觉的方案持续优化[16] - 数据闭环能力成为企业核心竞争力 涉及算法研发和工程化落地[19][21]